pull/46/merge
Mundher Alshabi 8 years ago committed by GitHub
commit 1ad79bcb8b
  1. 35
      README.md

@ -259,13 +259,15 @@ Courses
### Machine Learning
- **Introduction to Machine Learning**
- [COM4509/COM6509 Machine Learning and Adaptive Intelligence 2015-16](http://inverseprobability.com/mlai2015/)
- [Winter 2017 STAT 441 / 841 Classification, Waterloo](https://www.youtube.com/playlist?list=PLehuLRPyt1HzXDemu7K4ETcF0Ld_B5adG)
- [MOOC Machine Learning Andrew Ng - Coursera/Stanford](https://www.youtube.com/playlist?list=PLJ1-ciQ35nuiyL1PX6O4NdF5CjjaDdnVC) ([Notes](http://www.holehouse.org/mlclass/))
- [MOOC - Statistical Learning, Stanford University](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/)
- [Foundations of Machine Learning Boot Camp, Berkeley Simons Institute](https://www.youtube.com/playlist?list=PLgKuh-lKre11GbZWneln-VZDLHyejO7YD)
- [CS155 - Machine Learning & Data Mining, 2017 - Caltech](https://www.youtube.com/playlist?list=PLuz4CTPOUNi6BfMrltePqMAHdl5W33-bC) ([Notes](http://www.yisongyue.com/courses/cs155/2017_winter/)) ([2016](https://www.youtube.com/playlist?list=PL5HdMttxBY0BVTP9y7qQtzTgmcjQ3P0mb))
- [CS 156 - Learning from Data, Caltech](https://work.caltech.edu/lectures.html)
- [10-601 - Introduction to Machine Learning (MS), CMU](http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml) ([YouTube](https://www.youtube.com/playlist?list=PLAJ0alZrN8rD63LD0FkzKFiFgkOmEtltQ))
- [10-701 - Introduction to Machine Learning (PhD) - Tom Mitchell, Spring 2011, CMU](http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml) ([Fall 2014](https://www.youtube.com/playlist?list=PL7y-1rk2cCsDZCVz2xS7LrExqidHpJM3B))
- [CS155 2017 Machine Learning & Data Mining - Caltech](https://www.youtube.com/playlist?list=PLuz4CTPOUNi6BfMrltePqMAHdl5W33-bC) ([Notes](http://www.yisongyue.com/courses/cs155/2017_winter/)) ([2016](https://www.youtube.com/playlist?list=PL5HdMttxBY0BVTP9y7qQtzTgmcjQ3P0mb))
- [10-601 - Introduction to Machine Learning (MS), Carnegie Mellon University](http://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml)
- [10-701 - Introduction to Machine Learning (PhD) - Tom Mitchell, Spring 2011, Carnegie Mellon University](http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml) ([Fall 2014](https://www.youtube.com/playlist?list=PL7y-1rk2cCsDZCVz2xS7LrExqidHpJM3B))
- [Microsoft Research - Machine Learning Course](https://www.youtube.com/playlist?list=PL34iyE0uXtxo7vPXGFkmm6KbgZQwjf9Kf)
- [CS 446 - Machine Learning, Fall 2016, UIUC](http://l2r.cs.illinois.edu/~danr/Teaching/CS446-16/schedule.html)([Fall 2015 Lectures](https://www.youtube.com/playlist?list=PLQcasX5-oG91n10wPxeRh-45-8HATwc8W))
- [undergraduate machine learning at UBC 2012, Nando de Freitas](https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf)
@ -274,12 +276,9 @@ Courses
- [CS4780/5780 Machine Learning, Fall 2013 - Cornell University](http://www.cs.cornell.edu/courses/cs4780/2013fa/)
- [CS 5350/6350 - Machine Learning, Fall 2016, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCozRSsdueVwX7CF9N4QWL0B)
- [ECE 5984 Introduction to Machine Learning, Spring 2015 - Virginia Tech](https://filebox.ece.vt.edu/~s15ece5984/)
- [CSx824/ECEx242 Machine Learning, Bert Huang, Fall 2015 - Virginia Tech](https://www.youtube.com/playlist?list=PLUenpfvlyoa0rMoE5nXA8kdctBKE9eSob)
- [STA 4273H - Large Scale Machine Learning, Winter 2015 - University of Toronto](http://www.cs.toronto.edu/~rsalakhu/STA4273_2015/lectures.html)
- [CS 485/685 Machine Learning, Shai Ben-David, University of Waterloo](https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q/videos)
- [Information Theory, Pattern Recognition, and Neural Networks - University of Cambridge](https://www.youtube.com/playlist?list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6)
- [Python and machine learning - Stanford Crowd Course Initiative](https://www.youtube.com/playlist?list=PLVxFQjPUB2cnYGZPAGG52OQc9SpWVKjjB)
- [MOOC - Machine Learning Part 1a - Udacity/Georgia Tech](https://www.youtube.com/playlist?list=PLAwxTw4SYaPl0N6-e1GvyLp5-MUMUjOKo) ([Part 1b](https://www.youtube.com/playlist?list=PLAwxTw4SYaPlkESDcHD-0oqVx5sAIgz7O) [Part 2](https://www.youtube.com/playlist?list=PLAwxTw4SYaPmaHhu-Lz3mhLSj-YH-JnG7) [Part 3](https://www.youtube.com/playlist?list=PLAwxTw4SYaPnidDwo9e2c7ixIsu_pdSNp))
- [Information Theory, Pattern Recognition, and Neural Networks - University of Cambridge](http://www.inference.phy.cam.ac.uk/itprnn_lectures/)
- [Machine Learning and Data Mining - WS 2004 - Universität Freiburg](https://electures.informatik.uni-freiburg.de/portal/web/guest/detail/-/modulnavigation/view/75/3164/)
- [Machine Learning and Pattern Recognition 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/mlpr.htm)
- [Introductory Applied Machine Learning 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/iaml.htm)
@ -289,10 +288,6 @@ Courses
- [Pattern Recognition - IISC Bangalore](http://nptel.ac.in/courses/117108048/)
- [Pattern Recognition and Application - IIT Kharagpur](http://nptel.ac.in/courses/117105101/)
- [Pattern Recognition - IIT Madras](http://nptel.ac.in/courses/106106046/)
- [Machine Learning Summer School 2013 - Max Planck Institute for Intelligent Systems Tübingen](https://www.youtube.com/playlist?list=PLqJm7Rc5-EXFv6RXaPZzzlzo93Hl0v91E)
- [Machine Learning - Professor Kogan (Spring 2016) - Rutgers](https://www.youtube.com/playlist?list=PLauepKFT6DK_1_plY78bXMDj-bshv7UsQ)
- [CS273a: Introduction to Machine Learning](http://sli.ics.uci.edu/Classes/2015W-273a) ([YouTube](https://www.youtube.com/playlist?list=PLkWzaBlA7utJMRi89i9FAKMopL0h0LBMk))
- [Machine Learning Crash Course 2015](https://www.youtube.com/playlist?list=PLyGKBDfnk-iD5dK8N7UBUFVVDBBtznenR)
- **Data Mining**
- [CSEP 546, Data Mining - Pedro Domingos, Sp 2016 - University of Washington](https://courses.cs.washington.edu/courses/csep546/16sp/) ([YouTube](https://www.youtube.com/playlist?list=PLTPQEx-31JXgtDaC6-3HxWcp7fq4N8YGr))
- [CS 5140/6140 - Data Mining, Spring 2016, University of Utah](https://www.cs.utah.edu/~jeffp/teaching/cs5140.html) ([Youtube](https://www.youtube.com/playlist?list=PLbuogVdPnkCpXfb43Wvc7s5fXWzedwTPB))
@ -321,30 +316,27 @@ Courses
- **Deep Learning**
- [6.S191: Introduction to Deep Learning - MIT](http://introtodeeplearning.com/schedule.html)
- [Deep learning at Oxford 2015 - Nando de Freitas](https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
- [6.S094: Deep Learning for Self-Driving Cars - MIT](https://www.youtube.com/playlist?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf)
- [MIT 6.S094: Deep Learning for Self-Driving Cars](https://www.youtube.com/playlist?list=PLrAXtmErZgOeiKm4sgNOknGvNjby9efdf)
- [CS294-129 Designing, Visualizing and Understanding Deep Neural Networks](https://bcourses.berkeley.edu/courses/1453965/pages/cs294-129-designing-visualizing-and-understanding-deep-neural-networks) ([YouTube](https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm))
- [CS294-112, Deep Reinforcement Learning Sp17](http://rll.berkeley.edu/deeprlcourse/) ([YouTube](https://www.youtube.com/playlist?list=PLkFD6_40KJIwTmSbCv9OVJB3YaO4sFwkX))
- [Deep Learning, Stanford University](http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning)
- [MOOC - Neural Networks for Machine Learning, Geoffrey Hinton 2016 - Coursera](https://www.youtube.com/playlist?list=PLoRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9)
- [Deep Learning - University of Waterloo](https://www.youtube.com/playlist?list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE)
- [Deep Learning - University of Waterloo](https://uwaterloo.ca/data-science/deep-learning)
- [Neural networks class - Université de Sherbrooke](http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html) ([YouTube](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH))
- [Neural Networks and Applications - IIT Kharagpur](http://nptel.ac.in/courses/117105084/)
- [Practical Deep Learning For Coders](http://course.fast.ai/lessons/lessons.html)
- [Nvidia Machine Learning Class](https://www.youtube.com/playlist?list=PLTIkHmXc-7an8xbwhAJX-LQ4D4Uf-ar5I)
- **Advanced Machine Learning**
- [Machine Learning 2013 - Nando de Freitas, UBC](https://www.youtube.com/playlist?list=PLE6Wd9FR--EdyJ5lbFl8UuGjecvVw66F6)
- [Machine Learning, 2014-2015, University of Oxford](https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/)
- [10-702/36-702 - Statistical Machine Learning - Larry Wasserman, Spring 2016, CMU](http://www.stat.cmu.edu/~larry/=sml/) ([Spring 2015](https://www.youtube.com/playlist?list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r))
- [10-715 Advanced Introduction to Machine Learning - CMU](http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/) ([YouTube](https://www.youtube.com/playlist?list=PL4DwY1suLMkcu-wytRDbvBNmx57CdQ2pJ))
- [CS 281B - Scalable Machine Learning, Alex Smola, UC Berkeley](http://alex.smola.org/teaching/berkeley2012/syllabus.html)
- [18.409 Algorithmic Aspects of Machine Learning Spring 2015 - MIT](https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx)
- **ML based Natural Language Processing and Computer Vision**
- [CS 224d - Deep Learning for Natural Language Processing, Stanford University](http://cs224d.stanford.edu/syllabus.html) ([Lectures - Youtube](https://www.youtube.com/playlist?list=PLCJlDcMjVoEdtem5GaohTC1o9HTTFtK7_))
- [CS 224N - Natural Language Processing, Stanford University](https://www.youtube.com/playlist?list=PLgtM85Maly3n2Fp1gJVvqb0bTC39CPn1N)
- [MOOC - Natural Language Processing, Dan Jurafsky & Chris Manning - Coursera](https://www.youtube.com/playlist?list=PL6397E4B26D00A269)
- [MOOC - Natural Language Processing - Coursera, University of Michigan](https://www.youtube.com/playlist?list=PLLssT5z_DsK8BdawOVCCaTCO99Ya58ryR)
- [CS 231n - Convolutional Neural Networks for Visual Recognition, Stanford University](https://www.youtube.com/playlist?list=PLLvH2FwAQhnpj1WEB-jHmPuUeQ8mX-XXG)
- [Deep Learning for Natural Language Processing, 2017 - Oxford University](https://github.com/oxford-cs-deepnlp-2017/lectures)
- [Machine Learning for Robotics and Computer Vision, WS 2013/2014 - TU München](http://vision.in.tum.de/teaching/ws2013/ml_ws13) ([YouTube](https://www.youtube.com/playlist?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl))
- [Informatics 1 - Cognitive Science 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/inf1cs.htm)
- [Informatics 2A - Processing Formal and Natural Languages 2016-17 - University of Edinburgh](http://www.inf.ed.ac.uk/teaching/courses/inf2a/schedule.html)
@ -352,6 +344,7 @@ Courses
- [Accelerated Natural Language Processing 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/anlp.htm)
- [Natural Language Processing - IIT Bombay](http://nptel.ac.in/courses/106101007/)
- **Misc Machine Learning Topics**
- [Winter 2017, STAT 442 / 842 Data Visualization, Waterloo](https://www.youtube.com/playlist?list=PLehuLRPyt1HzQoXEhtNuYTmd0aNQvtyAK)
- [CS 6955 - Clustering, Spring 2015, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCpRvi-qSMCdOwyn4UYoPxTI)
- [Info 290 - Analyzing Big Data with Twitter, UC Berkeley school of information](http://blogs.ischool.berkeley.edu/i290-abdt-s12/) ([YouTube](https://www.youtube.com/playlist?list=PLE8C1256A28C1487F))
- [10-725 Convex Optimization, Spring 2015 - CMU](http://www.stat.cmu.edu/~ryantibs/convexopt-S15/)
@ -367,18 +360,15 @@ Courses
- [Reinforcement Learning - IIT Madras](http://nptel.ac.in/courses/106106143/)
- [Statistical Rethinking Winter 2015 - Richard McElreath](https://www.youtube.com/playlist?list=PLDcUM9US4XdMdZOhJWJJD4mDBMnbTWw_z)
- [Music Information Retrieval - University of Victoria, 2014](http://marsyas.cs.uvic.ca/mirBook/course/)
- [PURDUE Machine Learning Summer School 2011](https://www.youtube.com/playlist?list=PL2A65507F7D725EFB)
------------------------------
### Computer Networks
- [14-740 - Fundamentals of Computer Networks, Spring 2017 - CMU](http://www.ini740.com/S17/index.html#videos)
- [Introduction to Computer Networking - Stanford University](https://www.youtube.com/playlist?list=PLb9DZOrm6ibgwCLh3ghsw0Pke13JA3znj)
- [Prof. Shiv Kalyanaraman's Online Audio and Video Lectures on Computer Networking - RPI](https://www.ecse.rpi.edu/homepages/koushik/shivkuma-teaching/video_index.html)
- [Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures - Washington University in St. Louis](http://www.cse.wustl.edu/~jain/videos.htm) ([YouTube](https://www.youtube.com/user/ProfRajJain/playlists))
- [Computer Networks, Tanenbaum, Wetherall Computer Networks 5e - Video Lectures](http://media.pearsoncmg.com/ph/streaming/esm/tanenbaum5e_videonotes/tanenbaum_videoNotes.html)
- [Computer Networks, Tanenbaum, Wetherall Computer Networks 5e - Video Lectures](http://media.pearsoncmg.com/ph/streaming/esm/tanenbaum5e_videonotes/tanenbaum_videoNotes.html) ([U Washington MOOC](https://www.youtube.com/playlist?list=PLkHsKoi6eZnzJl1qTzmvBwTxrSJW4D2Jj))
- [CSEP 561 - PMP Network Systems, Fall 2013 - University of Washington](http://courses.cs.washington.edu/courses/csep561/13au/) ([Videos](http://courses.cs.washington.edu/courses/csep561/13au/video/))
- [CSEP 561 – Network Systems, Autumn 2008 - University of Washington](http://courses.cs.washington.edu/courses/csep561/08au/) ([Videos](http://courses.cs.washington.edu/courses/csep561/08au/lectures/))
- [Computer Networks - IIT Kharagpur](http://nptel.ac.in/courses/106105081/)
@ -423,6 +413,7 @@ Courses
- [MOOC - Statistics One - Coursera](https://www.youtube.com/playlist?list=PLycnP7USbo1V3jlyjAzWUB201cLxPq4NP)
- [Probability and Random Processes - IIT Kharagpur](http://nptel.ac.in/courses/117105085/)
- [MOOC - Statistical Inference - Coursera](https://www.youtube.com/playlist?list=PLgIPpm6tJZoSvrYM54BUqJJ4CWrYeGO40)
- [MOOC - Statistics One - Coursera](https://www.youtube.com/playlist?list=PLycnP7USbo1V3jlyjAzWUB201cLxPq4NP)
- [131B - Introduction to Probability and Statistics, UCI](https://www.youtube.com/playlist?list=PLqOZ6FD_RQ7k-j-86QUC2_0nEu0QOP-Wy)
- [The Probability and Statistics Full Course - YouTube](https://www.youtube.com/playlist?list=PLLssT5z_DsK_WYzNXVjT695FdxRxvlSF8)
- [STATS 250 - Introduction to Statistics and Data Analysis, UMichigan](https://www.youtube.com/playlist?list=PL432AB57AF9F43D4F)
@ -463,7 +454,7 @@ Courses
### Theoretical CS and Programming Languages
- [MOOC - Compilers - Stanford University](https://www.youtube.com/playlist?list=PL34iyE0uXtxrgPZMv0dVmq1P8Io889oWZ)
- [MOOC - Compilers - Stanford University](https://www.youtube.com/playlist?list=PLkHsKoi6eZnyEj2pz3R_ER7izlenSxP-I)
- [CS 164 Hack your language, UC Berkeley](https://sites.google.com/a/bodik.org/cs164/home) ([Lectures - Youtube](https://www.youtube.com/playlist?list=PL3A16CFC42CA6EF4F))
- [CS 173 Programming Languages, Brown University](http://cs.brown.edu/courses/cs173/2012/Videos/) ([Book](http://cs.brown.edu/courses/cs173/2012/book/))
- [CS 421 - Programming Languages and Compilers, UIUC](https://courses.engr.illinois.edu/cs421/fa2014/) ([Videos](http://recordings.engineering.illinois.edu/ess/portal/section/631edaeb-2a33-4537-b7c8-0c1cba783a4f))
@ -602,7 +593,7 @@ Courses
- [Rendering / Ray Tracing Course, SS 2015 - TU Wien](https://www.youtube.com/playlist?list=PLujxSBD-JXgnGmsn7gEyN28P1DnRZG7qi)
- [ECS 178 Introduction to Geometric Modeling, Fall 2012, UC Davis](http://graphics.cs.ucdavis.edu/~joy/ecs178/Units.html) ([iTunes](https://itunes.apple.com/us/itunes-u/computer-science-introduction/id389259246))
- [Computational Geometry - IIT Delhi](http://nptel.ac.in/courses/106102011/)
- [CS 468 - Differential Geometry for Computer Science - Stanford University](http://graphics.stanford.edu/courses/cs468-13-spring/schedule.html)
-------

Loading…
Cancel
Save