diff --git a/README.md b/README.md index e1ff526..215b35d 100755 --- a/README.md +++ b/README.md @@ -431,10 +431,10 @@ Table of Contents - [UC Berkeley CS 189 / 289A Introduction to Machine Learning fall 2023, by Jennifer Listgarten & Jitendra Malik](https://eecs189.org/) - [UC Berkeley CS 189 Introduction to Machine Learning (CDSS offering) spring 2022, by Marvin Zhang](https://www.youtube.com/playlist?list=PLCuQm2FL98HTlRmlwMk2AuFEM9n1c06HE) - [MIT 6.036 Introduction to Machine Learning spring 2019, by Leslie Kaelbling](https://www.youtube.com/playlist?list=PLQEw29vp6f1Ae9dp8vkKB8H6sF1PHvP5N) - - [UCLA STAT C161 Introduction to Pattern Recognition and Machine Learning winter 2023, by Arash Amini](https://www.youtube.com/playlist?list=PLN_qg0-2-0SwLCXGUyM3FNSRwG6GNgONr) + - [UCLA Stats C161/C261 Introduction to Pattern Recognition and Machine Learning winter 2024, by Arash Amini](https://www.youtube.com/playlist?list=PLN_qg0-2-0SxQ2vlXxlZVMKkt4gI1YYP8) ([Winter 2023](https://www.youtube.com/playlist?list=PLN_qg0-2-0SwLCXGUyM3FNSRwG6GNgONr)) + - [UCLA Stats 231C Theories of Machine Learning spring 2022, by Arash Amini](https://www.youtube.com/playlist?list=PLN_qg0-2-0SxKyZLv_FotPDED5ET_rQmo) - [MSU Machine Learning](https://www.youtube.com/watch?v=kMf0qDtQ_PM&list=PLZ-krWGO-UEyPHsZfOjYH03_TyIN2pPhl&pp=iAQB) - [Data Science for Dynamical Systems, by Oliver Wallscheid & Sebastian Peitz](https://www.youtube.com/@UPB_DS4DS-bu8ec/playlists) - - [STATS C161/C261 - Introduction to Pattern Recognition and Machine Learning Winter 2024](https://www.youtube.com/playlist?list=PLN_qg0-2-0SxQ2vlXxlZVMKkt4gI1YYP8) - [Cambridge Statistical Learning in Practice 2021, by Alberto J. Coca](https://www.youtube.com/playlist?list=PLn1JSlh3WT_b7sMBktkAgV9-cP052JFhb) - [Data 8: The Foundations of Data Science - UC Berkeley](http://data8.org/) ([Summer 17](http://data8.org/su17/)) - [CSE519 - Data Science Fall 2016 - Skiena, SBU](https://www.youtube.com/playlist?list=PLOtl7M3yp-DVBdLYatrltDJr56AKZ1qXo) @@ -728,7 +728,9 @@ Table of Contents - [UCLA Stats 102A Introduction to Computational Statistics with R winter 2024, by Miles Chen](https://www.youtube.com/playlist?list=PLIygTcviGPKCiE3kiMI7ofuQ3wmXQUcmx) - [UCLA Stats 102B Computation and Optimization for Statistics spring 2024, by Miles Chen](https://www.youtube.com/playlist?list=PLIygTcviGPKD4XftRgjRlTITljOx792YN) - [UCLA Stats 102C Introduction to Monte Carlo Methods fall 2023, by Miles Chen](https://www.youtube.com/playlist?list=PLIygTcviGPKDv0fZ7RxMGPuaa1Yqx_bzh) - - [STATS 200C: High-dimensional Statistics](https://www.youtube.com/playlist?list=PLN_qg0-2-0SzyrvojbW4UZQjVG1CnBFMd) + - [UCLA Stats 200B Theoretical Statistics winter 2023, by Arash Amini](https://www.youtube.com/playlist?list=PLN_qg0-2-0Sw03Ffmuq8prIVSoTI3yVyR) + - [UCLA Stats 200C High-dimensional Statistics spring 2022, by Arash Amini](https://www.youtube.com/playlist?list=PLN_qg0-2-0SzyrvojbW4UZQjVG1CnBFMd) ([Spring 2021](https://www.youtube.com/playlist?list=PLN_qg0-2-0Sy-nbvOCLgt6uIQsOnmG-iV)) + - [UCLA Stats 203 Large Sample Theory fall 2021, by Jingyi Jessica Li](https://www.youtube.com/playlist?list=PLAYxx7zX5F1P5GG-9U8eJPL_MIsl1_8Zh) ([Fall 2020](https://www.youtube.com/playlist?list=PLAYxx7zX5F1NKukTVwMADi1D5dbufWJkz)) - **Linear Algebra** - [Mathematical Foundations of Machine Learning (Fall 2021) - University of Chicago - Rebecca Willett](https://willett.psd.uchicago.edu/teaching/mathematical-foundations-of-machine-learning-fall-2021/) - [18.06 - Linear Algebra, Prof. Gilbert Strang, MIT OCW](https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/)