diff --git a/README.md b/README.md index 8b14eaf..8200f04 100755 --- a/README.md +++ b/README.md @@ -585,6 +585,7 @@ Table of Contents - #### **Generative AI** - [Stanford CS236: Deep Generative Models I 2023 I Stefano Ermon](https://www.youtube.com/playlist?list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8) - [CS 6785 - Deep Generative Models - Cornell Tech, Spring 2023)](https://www.youtube.com/playlist?list=PL2UML_KCiC0UPzjW9BjO-IW6dqliu9O4B) + - [MIT 6.S184 Flow Matching and Diffusion Models, 2025](https://diffusion.csail.mit.edu) - #### **Computer Vision** - [CS 231n - Convolutional Neural Networks for Visual Recognition, Stanford University](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv) @@ -645,6 +646,7 @@ Table of Contents - [ACP SUMMER SCHOOL 2023 on Machine Learning for Constraint Programming](https://www.youtube.com/playlist?list=PLcByDTr7vRTYJ2s6DL-3bzjGwtQif33y3) - [EE512A - Advanced Inference in Graphical Models, Fall Quarter, 2014](https://people.ece.uw.edu/bilmes/classes/ee512/ee512_fall_2014/) - [UIUC STAT 437 Unsupervised Learning spring 2024, by Tori Ellison](https://www.youtube.com/playlist?list=PLIygTcviGPKB133Vh7zxsxFoblyfS4P5Y) + - [Johns Hopkins Unsupervised Learning spring 2017, by Rene Vidal](https://www.youtube.com/playlist?list=PLaBAmmD3yH4Nta9Y6g9hOV4dcnpTzeW4q) - [University of Wisconsin-Madison CS/ECE 561 - Probability and Information Theory in Machine Learning fall 2020, by Matthew Malley](https://mediaspace.wisc.edu/channel/CS_ECE%2B561%2B-%2BProbability%2Band%2BInfo%2BTheory%2Bin%2BMachine%2BLearning/191748913) - [University of Maryland CMSC828U Algorithms in Machine Learning: Guarantees and Analyses fall 2020, by Furong Huang](https://www.cs.umd.edu/class/fall2020/cmsc828u//schedule/) ([YouTube playlist](https://www.youtube.com/playlist?list=PLM0SC1uXFSPo5TO_UN7fia1luj73yuHEC)) - [Statistical Physics of Machine Learning](https://www.youtube.com/playlist?list=PL04QVxpjcnjgzMr9ehyZUSkwu0Wr0cF_N)