TOC - ML Categories

pull/329/head
Developer-Y 7 months ago committed by GitHub
parent f473d00968
commit fce264dee2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 59
      README.md

@ -22,6 +22,18 @@ Table of Contents
- [Software Engineering](#software-engineering) - [Software Engineering](#software-engineering)
- [Artificial Intelligence](#artificial-intelligence) - [Artificial Intelligence](#artificial-intelligence)
- [Machine Learning](#machine-learning) - [Machine Learning](#machine-learning)
* [Introduction to Machine Learning](#introduction-to-machine-learning)
* [Data Mining](#data-mining)
* [Probabilistic Graphical Modeling](#probabilistic-graphical-modeling)
* [Deep Learning](#deep-learning)
* [Reinforcement Learning](#reinforcement-learning)
* [Advanced Machine Learning](#advanced-machine-learning)
* [Natural Language Processing](#natural-language-processing)
* [Generative AI](#generative-ai)
* [Computer Vision](#computer-vision)
* [Time Series Analysis](#time-series-analysis)
* [Optimization](#optimization)
* [Misc Machine Learning Topics](#misc-machine-learning-topics)
- [Computer Networks](#computer-networks) - [Computer Networks](#computer-networks)
- [Math for Computer Scientist](#math-for-computer-scientist) - [Math for Computer Scientist](#math-for-computer-scientist)
- [Web Programming and Internet Technologies](#web-programming-and-internet-technologies) - [Web Programming and Internet Technologies](#web-programming-and-internet-technologies)
@ -322,7 +334,7 @@ Table of Contents
### Machine Learning ### Machine Learning
- **Introduction to Machine Learning** - #### **Introduction to Machine Learning**
- [Introduction to Machine Learning for Coders](https://course18.fast.ai/ml) - [Introduction to Machine Learning for Coders](https://course18.fast.ai/ml)
- [MOOC - Statistical Learning, Stanford University](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/) - [MOOC - Statistical Learning, Stanford University](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/)
- [Foundations of Machine Learning Boot Camp, Berkeley Simons Institute](https://www.youtube.com/playlist?list=PLgKuh-lKre11GbZWneln-VZDLHyejO7YD) - [Foundations of Machine Learning Boot Camp, Berkeley Simons Institute](https://www.youtube.com/playlist?list=PLgKuh-lKre11GbZWneln-VZDLHyejO7YD)
@ -415,7 +427,18 @@ Table of Contents
- [Data Science for Dynamical Systems, by Oliver Wallscheid & Sebastian Peitz](https://www.youtube.com/@UPB_DS4DS-bu8ec/playlists) - [Data Science for Dynamical Systems, by Oliver Wallscheid & Sebastian Peitz](https://www.youtube.com/@UPB_DS4DS-bu8ec/playlists)
- [STATS C161/C261 - Introduction to Pattern Recognition and Machine Learning Winter 2024](https://www.youtube.com/playlist?list=PLN_qg0-2-0SxQ2vlXxlZVMKkt4gI1YYP8) - [STATS C161/C261 - Introduction to Pattern Recognition and Machine Learning Winter 2024](https://www.youtube.com/playlist?list=PLN_qg0-2-0SxQ2vlXxlZVMKkt4gI1YYP8)
- [Cambridge Statistical Learning in Practice 2021, by Alberto J. Coca](https://www.youtube.com/playlist?list=PLn1JSlh3WT_b7sMBktkAgV9-cP052JFhb) - [Cambridge Statistical Learning in Practice 2021, by Alberto J. Coca](https://www.youtube.com/playlist?list=PLn1JSlh3WT_b7sMBktkAgV9-cP052JFhb)
- **Data Mining** - [Data 8: The Foundations of Data Science - UC Berkeley](http://data8.org/) ([Summer 17](http://data8.org/su17/))
- [CSE519 - Data Science Fall 2016 - Skiena, SBU](https://www.youtube.com/playlist?list=PLOtl7M3yp-DVBdLYatrltDJr56AKZ1qXo)
- [CS 109 Data Science, Harvard University](http://cs109.github.io/2015/pages/videos.html) ([YouTube](https://www.youtube.com/playlist?list=PLb4G5axmLqiuneCqlJD2bYFkBwHuOzKus))
- [6.0002 Introduction to Computational Thinking and Data Science - MIT OCW](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/)
- [Data 100 - Summer 19- UC Berkeley](https://www.youtube.com/playlist?list=PLPHXc20GewP8J56CisONS_mFZWZAfa7jR)
- [Distributed Data Analytics (WT 2017/18) - HPI University of Potsdam](https://www.tele-task.de/series/1179/)
- [Statistics 133 - Concepts in Computing with Data, Fall 2013 - UC Berkeley](https://www.youtube.com/playlist?list=PL-XXv-cvA_iDsSPnMJlnhIyADGUmikoIO)
- [Data Profiling and Data Cleansing (WS 2014/15) - HPI University of Potsdam](https://www.tele-task.de/series/1027/)
- [CS 229r - Algorithms for Big Data, Harvard University](http://people.seas.harvard.edu/~minilek/cs229r/fall15/lec.html) ([Youtube](https://www.youtube.com/playlist?list=PL2SOU6wwxB0v1kQTpqpuu5kEJo2i-iUyf))
- [Algorithms for Big Data - IIT Madras](https://nptel.ac.in/courses/106106142/)
- [Python Data Science with the TCLab](https://github.com/APMonitor/data_science) ([YouTube](https://www.youtube.com/watch?v=pAgW_bZVo88&list=PLLBUgWXdTBDg1Qgmwt4jKtVn9BWh5-zgy))
- #### **Data Mining**
- [CSEP 546, Data Mining - Pedro Domingos, Sp 2016 - University of Washington](https://courses.cs.washington.edu/courses/csep546/16sp/) ([YouTube](https://www.youtube.com/playlist?list=PLTPQEx-31JXgtDaC6-3HxWcp7fq4N8YGr)) - [CSEP 546, Data Mining - Pedro Domingos, Sp 2016 - University of Washington](https://courses.cs.washington.edu/courses/csep546/16sp/) ([YouTube](https://www.youtube.com/playlist?list=PLTPQEx-31JXgtDaC6-3HxWcp7fq4N8YGr))
- [CS 5140/6140 - Data Mining, Spring 2016, University of Utah](https://www.cs.utah.edu/~jeffp/teaching/cs5140.html) ([Youtube](https://www.youtube.com/playlist?list=PLbuogVdPnkCpXfb43Wvc7s5fXWzedwTPB)) - [CS 5140/6140 - Data Mining, Spring 2016, University of Utah](https://www.cs.utah.edu/~jeffp/teaching/cs5140.html) ([Youtube](https://www.youtube.com/playlist?list=PLbuogVdPnkCpXfb43Wvc7s5fXWzedwTPB))
- [CS 5955/6955 - Data Mining, University of Utah](http://www.cs.utah.edu/~jeffp/teaching/cs5955.html) ([YouTube](https://www.youtube.com/channel/UCcrlwW88yMcXujhGjSP2WBg/videos)) - [CS 5955/6955 - Data Mining, University of Utah](http://www.cs.utah.edu/~jeffp/teaching/cs5955.html) ([YouTube](https://www.youtube.com/channel/UCcrlwW88yMcXujhGjSP2WBg/videos))
@ -429,19 +452,7 @@ Table of Contents
- [Information Retrieval - Spring 2018 - ETH Zurich](https://www.youtube.com/playlist?list=PLzn6LN6WhlN1ktkDvNurPSDwTQ_oGQisn) - [Information Retrieval - Spring 2018 - ETH Zurich](https://www.youtube.com/playlist?list=PLzn6LN6WhlN1ktkDvNurPSDwTQ_oGQisn)
- [CAP6673 - Data Mining and Machine Learning - FAU](http://www.cse.fau.edu/~taghi/classes/cap6673/)([Video lectures](https://vimeo.com/album/1505953)) - [CAP6673 - Data Mining and Machine Learning - FAU](http://www.cse.fau.edu/~taghi/classes/cap6673/)([Video lectures](https://vimeo.com/album/1505953))
- [Data Warehousing and Data Mining Techniques - Technische Universität Braunschweig, Germany](http://www.ifis.cs.tu-bs.de/teaching/ws-1617/dwh) - [Data Warehousing and Data Mining Techniques - Technische Universität Braunschweig, Germany](http://www.ifis.cs.tu-bs.de/teaching/ws-1617/dwh)
- **Data Science** - #### **Probabilistic Graphical Modeling**
- [Data 8: The Foundations of Data Science - UC Berkeley](http://data8.org/) ([Summer 17](http://data8.org/su17/))
- [CSE519 - Data Science Fall 2016 - Skiena, SBU](https://www.youtube.com/playlist?list=PLOtl7M3yp-DVBdLYatrltDJr56AKZ1qXo)
- [CS 109 Data Science, Harvard University](http://cs109.github.io/2015/pages/videos.html) ([YouTube](https://www.youtube.com/playlist?list=PLb4G5axmLqiuneCqlJD2bYFkBwHuOzKus))
- [6.0002 Introduction to Computational Thinking and Data Science - MIT OCW](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/)
- [Data 100 - Summer 19- UC Berkeley](https://www.youtube.com/playlist?list=PLPHXc20GewP8J56CisONS_mFZWZAfa7jR)
- [Distributed Data Analytics (WT 2017/18) - HPI University of Potsdam](https://www.tele-task.de/series/1179/)
- [Statistics 133 - Concepts in Computing with Data, Fall 2013 - UC Berkeley](https://www.youtube.com/playlist?list=PL-XXv-cvA_iDsSPnMJlnhIyADGUmikoIO)
- [Data Profiling and Data Cleansing (WS 2014/15) - HPI University of Potsdam](https://www.tele-task.de/series/1027/)
- [CS 229r - Algorithms for Big Data, Harvard University](http://people.seas.harvard.edu/~minilek/cs229r/fall15/lec.html) ([Youtube](https://www.youtube.com/playlist?list=PL2SOU6wwxB0v1kQTpqpuu5kEJo2i-iUyf))
- [Algorithms for Big Data - IIT Madras](https://nptel.ac.in/courses/106106142/)
- [Python Data Science with the TCLab](https://github.com/APMonitor/data_science) ([YouTube](https://www.youtube.com/watch?v=pAgW_bZVo88&list=PLLBUgWXdTBDg1Qgmwt4jKtVn9BWh5-zgy))
- **Probabilistic Graphical Modeling**
- [MOOC - Probabilistic Graphical Models - Coursera](https://www.youtube.com/playlist?list=PLvfF4UFg6Ejj6SX-ffw-O4--SPbB9P7eP) - [MOOC - Probabilistic Graphical Models - Coursera](https://www.youtube.com/playlist?list=PLvfF4UFg6Ejj6SX-ffw-O4--SPbB9P7eP)
- [CS 6190 - Probabilistic Modeling, Spring 2016, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCpvxdF-Gy3gwaBObx7AnQut) - [CS 6190 - Probabilistic Modeling, Spring 2016, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCpvxdF-Gy3gwaBObx7AnQut)
- [10-708 - Probabilistic Graphical Models, Carnegie Mellon University](https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html) - [10-708 - Probabilistic Graphical Models, Carnegie Mellon University](https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html)
@ -449,7 +460,7 @@ Table of Contents
- [Probabilistic Models - UNIVERSITY OF HELSINKI](https://www.cs.helsinki.fi/en/courses/582636/2015/K/K/1) - [Probabilistic Models - UNIVERSITY OF HELSINKI](https://www.cs.helsinki.fi/en/courses/582636/2015/K/K/1)
- [Probabilistic Modelling and Reasoning 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/pmr.htm) - [Probabilistic Modelling and Reasoning 2015/16- University of Edinburgh](http://groups.inf.ed.ac.uk/vision/VIDEO/2015/pmr.htm)
- [Probabilistic Graphical Models, Spring 2018 - Notre Dame](https://www.youtube.com/playlist?list=PLd-PuDzW85AcV4bgdu7wHPL37hm60W4RM) - [Probabilistic Graphical Models, Spring 2018 - Notre Dame](https://www.youtube.com/playlist?list=PLd-PuDzW85AcV4bgdu7wHPL37hm60W4RM)
- **Deep Learning** - #### **Deep Learning**
- [Full Stack Deep Learning - Course 2022](https://www.youtube.com/watch?v=-Iob-FW5jVM&list=PL1T8fO7ArWleMMI8KPJ_5D5XSlovTW_Ur) - [Full Stack Deep Learning - Course 2022](https://www.youtube.com/watch?v=-Iob-FW5jVM&list=PL1T8fO7ArWleMMI8KPJ_5D5XSlovTW_Ur)
- [Full Stack Deep Learning - Course 2021](https://www.youtube.com/watch?v=fGxWfEuUu0w&list=PL1T8fO7ArWlcWg04OgNiJy91PywMKT2lv) - [Full Stack Deep Learning - Course 2021](https://www.youtube.com/watch?v=fGxWfEuUu0w&list=PL1T8fO7ArWlcWg04OgNiJy91PywMKT2lv)
- [NYU Deep Learning Spring 2020](https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq) - [NYU Deep Learning Spring 2020](https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq)
@ -494,7 +505,7 @@ Table of Contents
- [UT Austin CS 394D Deep Learning fall 2021, by Philipp KrahenBühl](https://www.youtube.com/playlist?list=PL682UO4IMem_B72vmX4r0v3UrAjPRFAnE) - [UT Austin CS 394D Deep Learning fall 2021, by Philipp KrahenBühl](https://www.youtube.com/playlist?list=PL682UO4IMem_B72vmX4r0v3UrAjPRFAnE)
- [CMU 10 417 / 10 617 Intermediate Deep Learning fall 2022, by Ruslan Salakhutdinov](https://www.youtube.com/playlist?list=PL682UO4IMem8A3WUecf30olVT--FhRK7h) - [CMU 10 417 / 10 617 Intermediate Deep Learning fall 2022, by Ruslan Salakhutdinov](https://www.youtube.com/playlist?list=PL682UO4IMem8A3WUecf30olVT--FhRK7h)
- [CS294 Deep Unsupervised Learning Spring 2024](https://sites.google.com/view/berkeley-cs294-158-sp24/home) - [CS294 Deep Unsupervised Learning Spring 2024](https://sites.google.com/view/berkeley-cs294-158-sp24/home)
- **Reinforcement Learning** - #### **Reinforcement Learning**
- [CS234: Reinforcement Learning - Winter 2019 - Stanford University](https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u) - [CS234: Reinforcement Learning - Winter 2019 - Stanford University](https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u)
- [Introduction to reinforcement learning - UCL](https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ) - [Introduction to reinforcement learning - UCL](https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ)
- [Advanced Deep Learning & Reinforcement Learning - UCL](https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs) - [Advanced Deep Learning & Reinforcement Learning - UCL](https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs)
@ -516,14 +527,14 @@ Table of Contents
- [CMU 10 703 Deep Reinforcement Learning & Control fall 2022, by Katerina Fragkiadaki](https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22ee5794a2-cb54-4edc-836b-aefc01023243%22) - [CMU 10 703 Deep Reinforcement Learning & Control fall 2022, by Katerina Fragkiadaki](https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22ee5794a2-cb54-4edc-836b-aefc01023243%22)
- [ECE524 Foundations of Reinforcement Learning at Princeton University, Spring 2024](https://www.youtube.com/playlist?list=PLYXvCE1En13epbogBmgafC_Yyyk9oQogl) - [ECE524 Foundations of Reinforcement Learning at Princeton University, Spring 2024](https://www.youtube.com/playlist?list=PLYXvCE1En13epbogBmgafC_Yyyk9oQogl)
- [REINFORCEMENT LEARNING AND OPTIMAL CONTROL - Dimitri P. Bertsekas, ASU](https://web.mit.edu/dimitrib/www/RLbook.html) - [REINFORCEMENT LEARNING AND OPTIMAL CONTROL - Dimitri P. Bertsekas, ASU](https://web.mit.edu/dimitrib/www/RLbook.html)
- **Advanced Machine Learning** - #### **Advanced Machine Learning**
- [Advanced Machine Learning, 2021-2022, Sem I - by Prof. Madhavan Mukund, CMI](https://www.cmi.ac.in/~madhavan/courses/aml2021) - [Advanced Machine Learning, 2021-2022, Sem I - by Prof. Madhavan Mukund, CMI](https://www.cmi.ac.in/~madhavan/courses/aml2021)
- [18.409 Algorithmic Aspects of Machine Learning Spring 2015 - MIT](https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx) - [18.409 Algorithmic Aspects of Machine Learning Spring 2015 - MIT](https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx)
- [CS 330 - Deep Multi-Task and Meta Learning - Fall 2019 - Stanford University](https://cs330.stanford.edu/) ([Youtube](https://www.youtube.com/playlist?list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5)) - [CS 330 - Deep Multi-Task and Meta Learning - Fall 2019 - Stanford University](https://cs330.stanford.edu/) ([Youtube](https://www.youtube.com/playlist?list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5))
- [Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022](https://www.youtube.com/playlist?list=PLoROMvodv4rNjRoawgt72BBNwL2V7doGI) - [Stanford CS330: Deep Multi-Task and Meta Learning I Autumn 2022](https://www.youtube.com/playlist?list=PLoROMvodv4rNjRoawgt72BBNwL2V7doGI)
- [ES 661 (2023): Probabilistic Machine Learning - IIT Gandhinagar](https://www.youtube.com/playlist?list=PLftoLyLEwECBEJyfRBJoSBd0UaTjEcs3I) - [ES 661 (2023): Probabilistic Machine Learning - IIT Gandhinagar](https://www.youtube.com/playlist?list=PLftoLyLEwECBEJyfRBJoSBd0UaTjEcs3I)
- [Information Retrieval in High Dimensional Data](https://www.youtube.com/playlist?list=PLaE1lKCe0jH3ePp9wCU1ygTquVOXY-UYv) - [Information Retrieval in High Dimensional Data](https://www.youtube.com/playlist?list=PLaE1lKCe0jH3ePp9wCU1ygTquVOXY-UYv)
- **Natural Language Processing** - #### **Natural Language Processing**
- [CS 224N -Natural Language Processing with Deep Learning - Stanford University](http://web.stanford.edu/class/cs224n/) ([Lectures - Winter 2019](https://youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z)) ([Lectures - Winter 2021](https://youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ)) - [CS 224N -Natural Language Processing with Deep Learning - Stanford University](http://web.stanford.edu/class/cs224n/) ([Lectures - Winter 2019](https://youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z)) ([Lectures - Winter 2021](https://youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ))
- [CS 224N - Natural Language Processing, Stanford University](https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html) ([Lecture videos](https://academictorrents.com/details/d2c8f8f1651740520b7dfab23438d89bc8c0c0ab)) - [CS 224N - Natural Language Processing, Stanford University](https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html) ([Lecture videos](https://academictorrents.com/details/d2c8f8f1651740520b7dfab23438d89bc8c0c0ab))
- [Stanford XCS224U: Natural Language Understanding I Spring 2023](https://www.youtube.com/playlist?list=PLoROMvodv4rOwvldxftJTmoR3kRcWkJBp) - [Stanford XCS224U: Natural Language Understanding I Spring 2023](https://www.youtube.com/playlist?list=PLoROMvodv4rOwvldxftJTmoR3kRcWkJBp)
@ -546,9 +557,9 @@ Table of Contents
- [Stanford CS25 - Transformers United 2023](https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM) - [Stanford CS25 - Transformers United 2023](https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM)
- [Natural Language Processing (IN2361) - TUM](https://live.rbg.tum.de/?year=2019&term=W&slug=nlp&view=3) - [Natural Language Processing (IN2361) - TUM](https://live.rbg.tum.de/?year=2019&term=W&slug=nlp&view=3)
- [CS 886: Recent Advances on Foundation Models Winter 2024 - University of Waterloo](https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/) - [CS 886: Recent Advances on Foundation Models Winter 2024 - University of Waterloo](https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/)
- **Generative AI** - #### **Generative AI**
- [CS 6785 - Deep Generative Models - Cornell Tech, Spring 2023)](https://www.youtube.com/playlist?list=PL2UML_KCiC0UPzjW9BjO-IW6dqliu9O4B) - [CS 6785 - Deep Generative Models - Cornell Tech, Spring 2023)](https://www.youtube.com/playlist?list=PL2UML_KCiC0UPzjW9BjO-IW6dqliu9O4B)
- **ML based Computer Vision** - #### **Computer Vision**
- [CS 231n - Convolutional Neural Networks for Visual Recognition, Stanford University](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv) - [CS 231n - Convolutional Neural Networks for Visual Recognition, Stanford University](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv)
- [CS 198-126: Modern Computer Vision Fall 2022 (UC Berkeley)](https://www.youtube.com/playlist?list=PLzWRmD0Vi2KVsrCqA4VnztE4t71KnTnP5) - [CS 198-126: Modern Computer Vision Fall 2022 (UC Berkeley)](https://www.youtube.com/playlist?list=PLzWRmD0Vi2KVsrCqA4VnztE4t71KnTnP5)
- [Machine Learning for Robotics and Computer Vision, WS 2013/2014 - TU München](https://vision.in.tum.de/teaching/ws2013/ml_ws13) ([YouTube](https://www.youtube.com/playlist?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl)) - [Machine Learning for Robotics and Computer Vision, WS 2013/2014 - TU München](https://vision.in.tum.de/teaching/ws2013/ml_ws13) ([YouTube](https://www.youtube.com/playlist?list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl))
@ -558,10 +569,10 @@ Table of Contents
- [NOC:Deep Learning For Visual Computing - IIT Kharagpur](https://nptel.ac.in/courses/108/105/108105103/) - [NOC:Deep Learning For Visual Computing - IIT Kharagpur](https://nptel.ac.in/courses/108/105/108105103/)
- [Deep Learning for Computer Vision - University of Michigan](https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r) - [Deep Learning for Computer Vision - University of Michigan](https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r)
- [ Extreme Classification ](https://www.youtube.com/watch?v=v0rAVyF4rWA&list=PLXtAHOcKKDTk43wjXud9GQS-l-QA5DQxH&pp=iAQB) - [ Extreme Classification ](https://www.youtube.com/watch?v=v0rAVyF4rWA&list=PLXtAHOcKKDTk43wjXud9GQS-l-QA5DQxH&pp=iAQB)
- **Time Series Analysis** - #### **Time Series Analysis**
- [02417 Time Series Analysis](https://www.youtube.com/playlist?list=PLtiTxpFJ4k6TZ0g496fVcQpt_-XJRNkbi) - [02417 Time Series Analysis](https://www.youtube.com/playlist?list=PLtiTxpFJ4k6TZ0g496fVcQpt_-XJRNkbi)
- [Applied Time Series Analysis](https://www.youtube.com/playlist?list=PLl0FT6O_WWDBm-4W-eoK34omYmEMseQDX) - [Applied Time Series Analysis](https://www.youtube.com/playlist?list=PLl0FT6O_WWDBm-4W-eoK34omYmEMseQDX)
- **Optimization** - #### **Optimization**
- [Optimisation for Machine Learning: Theory and Implementation (Hindi) - IIT](https://www.youtube.com/playlist?list=PLyqSpQzTE6M-pmLzCoMu_ANU6atEFyyJl) - [Optimisation for Machine Learning: Theory and Implementation (Hindi) - IIT](https://www.youtube.com/playlist?list=PLyqSpQzTE6M-pmLzCoMu_ANU6atEFyyJl)
- [EE364a: Convex Optimization I - Stanford University](http://web.stanford.edu/class/ee364a/videos.html) - [EE364a: Convex Optimization I - Stanford University](http://web.stanford.edu/class/ee364a/videos.html)
- [10-725 Convex Optimization, Spring 2015 - CMU](http://www.stat.cmu.edu/~ryantibs/convexopt-S15/) - [10-725 Convex Optimization, Spring 2015 - CMU](http://www.stat.cmu.edu/~ryantibs/convexopt-S15/)
@ -569,7 +580,7 @@ Table of Contents
- [10-725 Optimization Fall 2012 - CMU](http://www.cs.cmu.edu/~ggordon/10725-F12/schedule.html) - [10-725 Optimization Fall 2012 - CMU](http://www.cs.cmu.edu/~ggordon/10725-F12/schedule.html)
- [10-801 Advanced Optimization and Randomized Methods - CMU](http://www.cs.cmu.edu/~suvrit/teach/aopt.html) ([YouTube](https://www.youtube.com/playlist?list=PLjTcdlvIS6cjdA8WVXNIk56X_SjICxt0d)) - [10-801 Advanced Optimization and Randomized Methods - CMU](http://www.cs.cmu.edu/~suvrit/teach/aopt.html) ([YouTube](https://www.youtube.com/playlist?list=PLjTcdlvIS6cjdA8WVXNIk56X_SjICxt0d))
- [AM 207 - Stochastic Methods for Data Analysis, Inference and Optimization, Harvard University](http://am207.github.io/2016/index.html) - [AM 207 - Stochastic Methods for Data Analysis, Inference and Optimization, Harvard University](http://am207.github.io/2016/index.html)
- **Misc Machine Learning Topics** - #### **Misc Machine Learning Topics**
- [Quantum Machine Learning | 2021 Qiskit Global Summer School](https://www.youtube.com/playlist?list=PLOFEBzvs-VvqJwybFxkTiDzhf5E11p8BI) - [Quantum Machine Learning | 2021 Qiskit Global Summer School](https://www.youtube.com/playlist?list=PLOFEBzvs-VvqJwybFxkTiDzhf5E11p8BI)
- [CS 6955 - Clustering, Spring 2015, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCpRvi-qSMCdOwyn4UYoPxTI) - [CS 6955 - Clustering, Spring 2015, University of Utah](https://www.youtube.com/playlist?list=PLbuogVdPnkCpRvi-qSMCdOwyn4UYoPxTI)
- [Info 290 - Analyzing Big Data with Twitter, UC Berkeley school of information](http://blogs.ischool.berkeley.edu/i290-abdt-s12/) ([YouTube](https://www.youtube.com/playlist?list=PLE8C1256A28C1487F)) - [Info 290 - Analyzing Big Data with Twitter, UC Berkeley school of information](http://blogs.ischool.berkeley.edu/i290-abdt-s12/) ([YouTube](https://www.youtube.com/playlist?list=PLE8C1256A28C1487F))

Loading…
Cancel
Save