computer-sciencealgorithmsbioinformaticscomputer-architecturecomputer-visiondatabase-systemsdatabasesembedded-systemsmachine-learningprogramming-languagequantum-computingroboticssecuritysystemsweb-development
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
12 KiB
12 KiB
Computer Science video courses
Introduction
List of Computer Science courses with video lectures. For more courses, please refer MIT OCW and awesome-courses
Focus would be to act as general undergraduate/graduate CS University curriculum. Brevity would be preferred over comprehensiveness/details in order to maintain the list readable and usable. Please visit link to course for more details.
Table of Contents
- Introduction to CS
- Data Structures and Algorithms
- Systems
- Artificial Intelligence
- Machine Learning
- Computer Graphics
- CS Theory
- Programming Languages / Compilers
- Security
- Misc
Courses
Introduction to CS
- 6.00SC - Introduction to Computer Science and Programming (Spring 2011) - MIT OCW
- 6.00 - Introduction to Computer Science and Programming (Fall 2008) - MIT OCW
- 6.01SC - Introduction to Electrical Engineering and Computer Science I - MIT OCW
- 6.001 - Structure and Interpretation of Computer Programs, MIT (Textbook)
- CS 50 - Introduction to Computer Science, Harvard University
- CS 61A - Structure and Interpretation of Computer Programs [Python], UC Berkeley
- CS 101 - Computer Science 101, Stanford University (Register free to access Videos)
- CS 106A - Programming Methodology, Stanford University
- CS 106B - Programming Abstractions, Stanford University
- CS 107 - Programming Paradigms, Stanford University
Data Structures and Algorithms
- CS 61B - Data Structures, UC Berkeley
- 6.006 - Introduction to Algorithms, MIT OCW
- CSE 373 - Analysis of Algorithms, Stony Brook - Prof Skiena
- 6.046J - Introduction to Algorithms - Fall 2005, MIT OCW
- 6.046 - Design and Analysis of Algorithms, Spring 2015 - MIT OCW
- Programming Challenges - Prof Skiena
- 16s-4102 - Algorithms, University of Virginia (Youtube)
- CS 261 - A Second Course in Algorithms, Stanford University (Lectures) (Youtube)
- CS 224 - Advanced Algorithms, Harvard University (Lecture Videos) (Youtube)
- ECS 122A - Algorithm Design and Analysis, UC Davis
- CS 6150 - Advanced Algorithms (Fall 2016), University of Utah
- ECS 222A - Graduate Level Algorithm Design and Analysis, UC Davis
- 6.851 - Advanced Data Structures, MIT (MIT OCW)
- 6.854 - Advanced Algorithms, MIT (Prof. Karger lectures)
Systems
- 6.033 Computer System Engineering - MIT
- CS 162 - Operating Systems and Systems Programming, UC Berkeley (Lectures - YouTube)
- CS 4414 - Operating Systems, University of Virginia
- CSE 421/521 - Introduction to Operating Systems, SUNY University at Buffalo, NY - Spring 2016 (Lectures - YouTube)
- CS 377 Fall 16: Operating Systems - Umass OS
- 6.828: Operating System Engineering [Fall 2014]
- VU:Distributed Systems: Principles and Paradigms by Maarten van Steen (Fall 2012), Vrije Universiteit, Amsterdam
- CS 5530 - Database Systems, Spring 2016, University of Utah
- 15-721 - Database Systems, CMU (Lectures - YouTube)
- CS 186 - Database Systems, UC Berkeley, Spring 2015 (Lectures- YouTube)
- CS 6530 - Graduate-level Database Systems, Fall 2016, University of Utah (Lectures - YouTube)
- CS 677 Spring 16: Distributed Operating Systems - Umass OS
- CS 436: Distributed Computer Systems - U Waterloo
- 6.824: Distributed Systems, Spring 2015 - MIT
- CS194 Advanced Operating Systems Structures and Implementation, Spring 2013, UC Berkeley
- 6.858 Computer Systems Security - MIT OCW
Machine Learning
- StatLearning - Intro to Statistical Learning, Stanford University
- CS 156 - Learning from Data, Caltech
- 10-601 - Machine Learning, Carnegie Mellon University
- Microsoft Research - Machine Learning Course
- CS 446 - Machine Learning, Fall 2016, UIUC(Fall 2015 Lectures)
- undergraduate machine learning at UBC 2012, Nando de Freitas
- CS 229 - Machine Learning - Stanford University
- CS 5140/6140 - Data Mining, Spring 2016, University of Utah (Lectures - Youtube)
- CS 5350/6350 - Machine Learning, Fall 2016, University of Utah
- CS 6190 - Probabilistic Modeling, Spring 2016, University of Utah
- CS 6955 - Clustering, Spring 2015, University of Utah
- DS-GA 1008 - Deep Learning, New York University
- Info 290 - Analyzing Big Data with Twitter, UC Berkeley school of information
- Machine Learning 2013 - Nando de Freitas, UBC
- Machine Learning: 2014-2015, University of Oxford
- Deep learning at Oxford 2015 - Nando de Freitas
- 10-701 Machine Learning - Tom Mitchell, Spring 2011, Carnegie Mellon University (Fall 2014)
- 10-702/36-702 - Statistical Machine Learning - Larry Wasserman, Spring 2016, CMU
- 10-708 - Probabilistic Graphical Models, Carnegie Mellon University
- 36-705 - Intermediate Statistics - Larry Wasserman, CMU
- CS 224d - Deep Learning for Natural Language Processing, Stanford University (Lectures - Youtube)
- CS 229r - Algorithms for Big Data, Harvard University (Youtube)
- CS 231n - Convolutional Neural Networks for Visual Recognition, Stanford University
- CAM 383M - Statistical and Discrete Methods for Scientific Computing, University of Texas