Join strings and newline char (#8394)

pull/8397/head
Piotr Idzik 2 weeks ago committed by GitHub
parent 1813c7bba6
commit 58c3195831
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      src/data/roadmaps/cpp/content/c-vs-c@2Ag0t3LPryTF8khHLRfy-.md
  2. 2
      src/data/roadmaps/cpp/content/compilers@FTMHsUiE8isD_OVZr62Xc.md
  3. 4
      src/data/roadmaps/cpp/content/containers@1pydf-SR0QUfVNuBEyvzc.md
  4. 4
      src/data/roadmaps/cpp/content/copy-on-write@O2Du5gHHxFxAI2u5uO8wu.md
  5. 4
      src/data/roadmaps/cpp/content/crtp@ttt-yeIi4BPWrgvW324W7.md
  6. 8
      src/data/roadmaps/cpp/content/diamond-inheritance@ofwdZm05AUqCIWmfgGHk8.md
  7. 6
      src/data/roadmaps/cpp/content/dynamic-polymorphism@7h1VivjCPDwriL7FirtFv.md
  8. 4
      src/data/roadmaps/cpp/content/dynamic_cast@4BdFcuQ5KNW94cu2jz-vE.md
  9. 6
      src/data/roadmaps/cpp/content/exit-codes@oWygnpwHq2poXQMTTSCpl.md
  10. 4
      src/data/roadmaps/cpp/content/full-template-specialization@6hTcmJwNnQstbWWzNCfTe.md
  11. 2
      src/data/roadmaps/cpp/content/headers--cpp-files@CK7yf8Bo7kfbV6x2tZTrh.md
  12. 4
      src/data/roadmaps/cpp/content/iostream@VeVxZ230xkesQsIDig8zQ.md
  13. 2
      src/data/roadmaps/cpp/content/lambdas@xjiFBVe-VGqCqWfkPVGKf.md
  14. 8
      src/data/roadmaps/cpp/content/logical-operators@Y9gq8WkDA_XGe68JkY2UZ.md
  15. 6
      src/data/roadmaps/cpp/content/multiple-inheritance@WjHpueZDK-d3oDNMVZi9w.md
  16. 2
      src/data/roadmaps/cpp/content/multithreading@OXQUPqxzs1-giAACwl3X1.md
  17. 14
      src/data/roadmaps/cpp/content/object-oriented-programming@b3-QYKNcW3LYCNOza3Olf.md
  18. 2
      src/data/roadmaps/cpp/content/pimpl@MEoWt8NKjPLVTeGgYf3cR.md
  19. 4
      src/data/roadmaps/cpp/content/running-your-first-program@SEq0D2Zg5WTsIDtd1hW9f.md
  20. 2
      src/data/roadmaps/cpp/content/setting-up-your-environment@Zc_TTzmM36yWsu3GvOy9x.md
  21. 4
      src/data/roadmaps/cpp/content/sfinae@3C5UfejDX-1Z8ZF6C53xD.md

@ -34,7 +34,7 @@ int main() {
class HelloWorld {
public:
void printHello() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
}
};

@ -22,7 +22,7 @@ Let's say you have a simple C++ program saved in a file called `hello.cpp`:
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```

@ -64,7 +64,7 @@ int main() {
m["one"] = 1;
m["two"] = 2;
std::cout << "Map contains:" << '\n';
std::cout << "Map contains:\n";
for (const auto &pair : m) {
std::cout << pair.first << ": " << pair.second << '\n';
}
@ -87,7 +87,7 @@ int main() {
um["one"] = 1;
um["two"] = 2;
std::cout << "Unordered map contains:" << '\n';
std::cout << "Unordered map contains:\n";
for (const auto &pair : um) {
std::cout << pair.first << ": " << pair.second << '\n';
}

@ -14,7 +14,7 @@ public:
// Use the same shared data for copying.
MyString(const MyString &other) : data(other.data) {
std::cout << "Copied using the Copy-Write idiom." << '\n';
std::cout << "Copied using the Copy-Write idiom.\n";
}
// Make a copy only if we want to modify the data.
@ -22,7 +22,7 @@ public:
// Check if there's more than one reference.
if (data.use_count() > 1) {
data = std::make_shared<std::string>(*data);
std::cout << "Copy is actually made for writing." << '\n';
std::cout << "Copy is actually made for writing.\n";
}
*data = str;
}

@ -17,14 +17,14 @@ public:
}
void implementation() {
std::cout << "Default implementation in Base" << '\n';
std::cout << "Default implementation in Base\n";
}
};
class Derived1 : public Base<Derived1> {
public:
void implementation() {
std::cout << "Custom implementation in Derived1" << '\n';
std::cout << "Custom implementation in Derived1\n";
}
};

@ -12,28 +12,28 @@ To resolve this ambiguity, you can use virtual inheritance. A virtual base class
class Base {
public:
void print() {
std::cout << "Base class" << '\n';
std::cout << "Base class\n";
}
};
class Derived1 : virtual public Base {
public:
void derived1Print() {
std::cout << "Derived1 class" << '\n';
std::cout << "Derived1 class\n";
}
};
class Derived2 : virtual public Base {
public:
void derived2Print() {
std::cout << "Derived2 class" << '\n';
std::cout << "Derived2 class\n";
}
};
class Derived3 : public Derived1, public Derived2 {
public:
void derived3Print() {
std::cout << "Derived3 class" << '\n';
std::cout << "Derived3 class\n";
}
};

@ -15,7 +15,7 @@ Here's an example in C++ demonstrating dynamic polymorphism.
class Shape {
public:
virtual void draw() {
std::cout << "Drawing a shape" << '\n';
std::cout << "Drawing a shape\n";
}
};
@ -23,7 +23,7 @@ public:
class Circle : public Shape {
public:
void draw() override {
std::cout << "Drawing a circle" << '\n';
std::cout << "Drawing a circle\n";
}
};
@ -31,7 +31,7 @@ public:
class Rectangle : public Shape {
public:
void draw() override {
std::cout << "Drawing a rectangle" << '\n';
std::cout << "Drawing a rectangle\n";
}
};

@ -10,14 +10,14 @@ Here is a basic example of how `dynamic_cast` can be used:
class BaseClass {
public:
virtual void display() {
std::cout << "BaseClass" << '\n';
std::cout << "BaseClass\n";
}
};
class DerivedClass : public BaseClass {
public:
void display() {
std::cout << "DerivedClass" << '\n';
std::cout << "DerivedClass\n";
}
};

@ -15,14 +15,14 @@ int main() {
// Some code here...
if (/*some error condition*/) {
std::cout << "An error occurred." << '\n';
std::cout << "An error occurred.\n";
return 1;
}
// More code here...
if (/*another error condition*/) {
std::cout << "Another error occurred." << '\n';
std::cout << "Another error occurred.\n";
return 2;
}
@ -40,7 +40,7 @@ void some_function() {
// Some code here...
if (/*some error condition*/) {
std::cout << "An error occurred." << '\n';
std::cout << "An error occurred.\n";
std::exit(1);
}

@ -19,7 +19,7 @@ template <typename T>
class MyContainer {
public:
void print() {
std::cout << "Generic container." << '\n';
std::cout << "Generic container.\n";
}
};
@ -28,7 +28,7 @@ template <>
class MyContainer<int> {
public:
void print() {
std::cout << "Container for integers." << '\n';
std::cout << "Container for integers.\n";
}
};

@ -33,7 +33,7 @@ Example of a source file:
#include <iostream>
void Example::printMessage() {
std::cout << "Hello, code splitting!" << '\n';
std::cout << "Hello, code splitting!\n";
}
```

@ -35,8 +35,8 @@ int main() {
#include <iostream>
int main() {
std::cerr << "An error occurred." << '\n';
std::clog << "Logging information." << '\n';
std::cerr << "An error occurred.\n";
std::clog << "Logging information.\n";
return 0;
}
```

@ -25,7 +25,7 @@ Here are a few examples to demonstrate the use of lambda functions in C++:
```cpp
auto printHello = []() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
};
printHello(); // Output: Hello, World!
```

@ -13,7 +13,7 @@ C++ provides the following logical operators:
```cpp
int a = 5, b = 10;
if (a > 0 && b > 0) {
std::cout << "Both values are positive." << '\n';
std::cout << "Both values are positive.\n";
}
```
- **OR Operator (||)**
@ -25,7 +25,7 @@ C++ provides the following logical operators:
```cpp
int a = 5, b = -10;
if (a > 0 || b > 0) {
std::cout << "At least one value is positive." << '\n';
std::cout << "At least one value is positive.\n";
}
```
@ -38,7 +38,7 @@ C++ provides the following logical operators:
```cpp
int a = 5;
if (!(a < 0)) {
std::cout << "The value is not negative." << '\n';
std::cout << "The value is not negative.\n";
}
```
@ -48,7 +48,7 @@ Using these operators, you can create more complex logical expressions, for exam
int a = 5, b = -10, c = 15;
if (a > 0 && (b > 0 || c > 0)) {
std::cout << "At least two values are positive." << '\n';
std::cout << "At least two values are positive.\n";
}
```

@ -30,7 +30,7 @@ class Animal
public:
void eat()
{
std::cout << "I can eat!" << '\n';
std::cout << "I can eat!\n";
}
};
@ -40,7 +40,7 @@ class Mammal
public:
void breath()
{
std::cout << "I can breathe!" << '\n';
std::cout << "I can breathe!\n";
}
};
@ -50,7 +50,7 @@ class Dog : public Animal, public Mammal
public:
void bark()
{
std::cout << "I can bark! Woof woof!" << '\n';
std::cout << "I can bark! Woof woof!\n";
}
};

@ -13,7 +13,7 @@ To create a new thread, include the `<thread>` header file and create an instanc
#include <thread>
void my_function() {
std::cout << "This function is executing in a separate thread" << '\n';
std::cout << "This function is executing in a separate thread\n";
}
int main() {

@ -13,7 +13,7 @@ public:
int age;
void bark() {
std::cout << name << " barks!" << '\n';
std::cout << name << " barks!\n";
}
};
```
@ -47,7 +47,7 @@ public:
}
void bark() {
std::cout << name << " barks!" << '\n';
std::cout << name << " barks!\n";
}
};
```
@ -62,14 +62,14 @@ Inheritance is the concept of deriving new classes from existing ones, which ena
class Animal {
public:
void breathe() {
std::cout << "I can breathe" << '\n';
std::cout << "I can breathe\n";
}
};
class Dog : public Animal {
public:
void bark() {
std::cout << "Dog barks!" << '\n';
std::cout << "Dog barks!\n";
}
};
```
@ -90,21 +90,21 @@ Polymorphism allows you to use a single interface to represent different types.
class Animal {
public:
virtual void makeSound() {
std::cout << "The Animal makes a sound" << '\n';
std::cout << "The Animal makes a sound\n";
}
};
class Dog : public Animal {
public:
void makeSound() override {
std::cout << "Dog barks!" << '\n';
std::cout << "Dog barks!\n";
}
};
class Cat : public Animal {
public:
void makeSound() override {
std::cout << "Cat meows!" << '\n';
std::cout << "Cat meows!\n";
}
};
```

@ -32,7 +32,7 @@ class MyClass_Impl // the actual implementation
public:
void some_method()
{
std::cout << "Implementation method called!" << '\n';
std::cout << "Implementation method called!\n";
}
};

@ -10,7 +10,7 @@ The first program that most people learn to write in any programming language is
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```
@ -40,7 +40,7 @@ int main() {
To output text to the console, we use the `std::cout` object and the insertion operator `<<`. In the "Hello, World!" example, we used the following line to print "Hello, World!" to the console:
```cpp
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
```
- `std`: This is the namespace where C++ standard library entities (classes and functions) reside. It stands for "standard"
- `std::cout`: The standard "character output" stream that writes to the console

@ -38,7 +38,7 @@ Create a new file called `main.cpp` within your project and include this code:
#include <iostream>
int main() {
std::cout << "Hello, World!" << '\n';
std::cout << "Hello, World!\n";
return 0;
}
```

@ -15,14 +15,14 @@ Here's an example that demonstrates SFINAE in action:
template <typename T, typename = void>
struct foo_impl {
void operator()(T t) {
std::cout << "Called when T is not arithmetic" << '\n';
std::cout << "Called when T is not arithmetic\n";
}
};
template <typename T>
struct foo_impl<T, std::enable_if_t<std::is_arithmetic<T>::value>> {
void operator()(T t) {
std::cout << "Called when T is arithmetic" << '\n';
std::cout << "Called when T is arithmetic\n";
}
};

Loading…
Cancel
Save