Update coursera links

pull/4520/head
Kamran Ahmed 1 year ago
parent 573263ed74
commit d45c8f9cb2
  1. 28
      src/data/roadmaps/ai-data-scientist/ai-data-scientist.json
  2. 2
      src/data/roadmaps/ai-data-scientist/content/classic-advanced-ml.md
  3. 6
      src/data/roadmaps/ai-data-scientist/content/data-understanding.md
  4. 2
      src/data/roadmaps/ai-data-scientist/content/deployment-models.md
  5. 2
      src/data/roadmaps/ai-data-scientist/content/diff-calculus.md
  6. 2
      src/data/roadmaps/ai-data-scientist/content/fully-connected-nn.md
  7. 2
      src/data/roadmaps/ai-data-scientist/content/hypothesis-testing.md
  8. 2
      src/data/roadmaps/ai-data-scientist/content/learn-dsa.md
  9. 2
      src/data/roadmaps/ai-data-scientist/content/linear-algebra-calc-mathana.md
  10. 2
      src/data/roadmaps/ai-data-scientist/content/probability-sampling.md
  11. 4
      src/data/roadmaps/ai-data-scientist/content/regression-time-series-fitting-distr.md
  12. 2
      src/data/roadmaps/ai-data-scientist/content/stats-clt.md

@ -316,7 +316,7 @@
"x": "279", "x": "279",
"y": "583", "y": "583",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/specializations/mathematics-machine-learning#courses" "controlName": "ext_link:imp.i384100.net/baqMYv"
}, },
"children": { "children": {
"controls": { "controls": {
@ -443,7 +443,7 @@
"x": "278", "x": "278",
"y": "688", "y": "688",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/algebra-and-differential-calculus-for-data-science#syllabus" "controlName": "ext_link:imp.i384100.net/LX5M7M"
}, },
"children": { "children": {
"controls": { "controls": {
@ -596,7 +596,7 @@
"x": "903", "x": "903",
"y": "582", "y": "582",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/stanford-statistics#syllabus" "controlName": "ext_link:imp.i384100.net/3eRv4v"
}, },
"children": { "children": {
"controls": { "controls": {
@ -736,7 +736,7 @@
"x": "904", "x": "904",
"y": "686", "y": "686",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/statistical-analysis-hypothesis-testing-sas#syllabus" "controlName": "ext_link:imp.i384100.net/vN0JAA"
}, },
"children": { "children": {
"controls": { "controls": {
@ -862,7 +862,7 @@
"x": "904", "x": "904",
"y": "792", "y": "792",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/probability-statistics#syllabus" "controlName": "ext_link:imp.i384100.net/daDM6Q"
}, },
"children": { "children": {
"controls": { "controls": {
@ -2157,7 +2157,7 @@
"x": "269", "x": "269",
"y": "1102", "y": "1102",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/erasmus-econometrics#syllabus" "controlName": "ext_link:imp.i384100.net/k0krYL"
}, },
"children": { "children": {
"controls": { "controls": {
@ -2529,7 +2529,7 @@
"x": "269", "x": "269",
"y": "1464", "y": "1464",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/linear-regression-business-statistics#about" "controlName": "ext_link:imp.i384100.net/9g97Ke"
}, },
"children": { "children": {
"controls": { "controls": {
@ -3018,7 +3018,7 @@
"x": "255", "x": "255",
"y": "2037", "y": "2037",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/specializations/algorithms#courses" "controlName": "ext_link:imp.i384100.net/5gqv4n"
}, },
"children": { "children": {
"controls": { "controls": {
@ -3375,7 +3375,7 @@
"x": "810", "x": "810",
"y": "1749", "y": "1749",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/projects/exploratory-data-analysis-python-pandas" "controlName": "ext_link:imp.i384100.net/AWAv4R"
}, },
"children": { "children": {
"controls": { "controls": {
@ -3437,7 +3437,7 @@
"x": "811", "x": "811",
"y": "1804", "y": "1804",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/learn/ibm-exploratory-data-analysis-for-machine-learning#syllabus" "controlName": "ext_link:imp.i384100.net/GmQMLE"
}, },
"children": { "children": {
"controls": { "controls": {
@ -3499,7 +3499,7 @@
"x": "811", "x": "811",
"y": "1860", "y": "1860",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/projects/exploratory-data-analysis-seaborn" "controlName": "ext_link:imp.i384100.net/ZQmMgR"
}, },
"children": { "children": {
"controls": { "controls": {
@ -3786,7 +3786,7 @@
"x": "834", "x": "834",
"y": "2185", "y": "2185",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/specializations/machine-learning-introduction#courses" "controlName": "ext_link:imp.i384100.net/oqGkrg"
}, },
"children": { "children": {
"controls": { "controls": {
@ -4045,7 +4045,7 @@
"x": "268", "x": "268",
"y": "2445", "y": "2445",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/specializations/deep-learning#courses" "controlName": "ext_link:imp.i384100.net/Wq9MV3"
}, },
"children": { "children": {
"controls": { "controls": {
@ -4560,7 +4560,7 @@
"x": "938", "x": "938",
"y": "2606", "y": "2606",
"properties": { "properties": {
"controlName": "ext_link:coursera.org/specializations/machine-learning-engineering-for-production-mlops#courses" "controlName": "ext_link:imp.i384100.net/nLA5mx"
}, },
"children": { "children": {
"controls": { "controls": {

@ -1,7 +1,7 @@
# Classic/Advanced ML # Classic/Advanced ML
- [Open Machine Learning Course](https://mlcourse.ai/book/topic01/topic01_intro.html) - [Open Machine Learning Course](https://mlcourse.ai/book/topic01/topic01_intro.html)
- [Coursera: Machine Learning Spcialization](https://www.coursera.org/specializations/machine-learning-introduction#courses) - [Coursera: Machine Learning Specialization](https://imp.i384100.net/oqGkrg)
- [Pattern Recognition and Machine Learning by Christopher Bishop](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf) - [Pattern Recognition and Machine Learning by Christopher Bishop](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)
- [Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop](https://github.com/gerdm/prml) - [Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop](https://github.com/gerdm/prml)

@ -1,6 +1,6 @@
# Data Understanding, Analysis and Visualization # Data Understanding, Analysis and Visualization
- [Exploratory Data Analysis With Python and Pandas](https://www.coursera.org/projects/exploratory-data-analysis-python-pandas) - [Exploratory Data Analysis With Python and Pandas](https://imp.i384100.net/AWAv4R)
- [Exploratory Data Analysis for Machine Learning](https://www.coursera.org/learn/ibm-exploratory-data-analysis-for-machine-learning#syllabus) - [Exploratory Data Analysis for Machine Learning](https://imp.i384100.net/GmQMLE)
- [Exploratory Data Analysis with Seaborn](https://www.coursera.org/projects/exploratory-data-analysis-seaborn) - [Exploratory Data Analysis with Seaborn](https://imp.i384100.net/ZQmMgR)

@ -1,4 +1,4 @@
# MLOps # MLOps
- [Machine Learning Engineering for Production (MLOps) Specialization](https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops#courses) - [Machine Learning Engineering for Production (MLOps) Specialization](https://imp.i384100.net/nLA5mx)

@ -1,4 +1,4 @@
# Differential Calculus # Differential Calculus
- [Algebra and Differential Calculus for Data Science](https://coursera.org/learn/algebra-and-differential-calculus-for-data-science#syllabus) - [Algebra and Differential Calculus for Data Science](https://imp.i384100.net/LX5M7M)

@ -3,5 +3,5 @@
- [The Illustrated Transformer](https://jalammar.github.io/illustrated-transformer/) - [The Illustrated Transformer](https://jalammar.github.io/illustrated-transformer/)
- [Attention is All you Need](https://arxiv.org/pdf/1706.03762.pdf) - [Attention is All you Need](https://arxiv.org/pdf/1706.03762.pdf)
- [Deep Learning Book](https://www.deeplearningbook.org/) - [Deep Learning Book](https://www.deeplearningbook.org/)
- [Deep Learning Specialization](https://www.coursera.org/specializations/deep-learning#courses) - [Deep Learning Specialization](https://imp.i384100.net/Wq9MV3)

@ -1,4 +1,4 @@
# Hypothesis Testing # Hypothesis Testing
- [Introduction to Statistical Analysis: Hypothesis Testing](https://www.coursera.org/learn/statistical-analysis-hypothesis-testing-sas#syllabus) - [Introduction to Statistical Analysis: Hypothesis Testing](https://imp.i384100.net/vN0JAA)

@ -2,4 +2,4 @@
- [Learn Algorithms](https://leetcode.com/explore/learn/) - [Learn Algorithms](https://leetcode.com/explore/learn/)
- [Leetcode - Study Plans](https://leetcode.com/studyplan/) - [Leetcode - Study Plans](https://leetcode.com/studyplan/)
- [Algorithms Specialization](https://coursera.org/specializations/algorithms#courses) - [Algorithms Specialization](https://imp.i384100.net/5gqv4n)

@ -1,4 +1,4 @@
# Learn Algebra, Calculus, Mathematical Analysis # Learn Algebra, Calculus, Mathematical Analysis
- [Mathematics for Machine Learning Specialization](https://www.coursera.org/specializations/mathematics-machine-learning#courses) - [Mathematics for Machine Learning Specialization](https://imp.i384100.net/baqMYv)

@ -1,4 +1,4 @@
# Probability and Sampling # Probability and Sampling
- [Probability and Statistics: To p or not to p?](https://www.coursera.org/learn/probability-statistics#syllabus) - [Probability and Statistics: To p or not to p?](https://imp.i384100.net/daDM6Q)

@ -2,11 +2,11 @@
- [10 Fundamental Theorems for Econometrics](https://bookdown.org/ts_robinson1994/10EconometricTheorems/) - [10 Fundamental Theorems for Econometrics](https://bookdown.org/ts_robinson1994/10EconometricTheorems/)
- [Dougherty Intro to Econometrics 4th edition](https://www.academia.edu/33062577/Dougherty_Intro_to_Econometrics_4th_ed_small) - [Dougherty Intro to Econometrics 4th edition](https://www.academia.edu/33062577/Dougherty_Intro_to_Econometrics_4th_ed_small)
- [Econometrics: Methods and Applications](https://www.coursera.org/learn/erasmus-econometrics#syllabus) - [Econometrics: Methods and Applications](https://imp.i384100.net/k0krYL)
- [Kaggle - Learn Time Series](https://www.kaggle.com/learn/time-series) - [Kaggle - Learn Time Series](https://www.kaggle.com/learn/time-series)
- [Time series Basics : Exploring traditional TS](https://www.kaggle.com/code/jagangupta/time-series-basics-exploring-traditional-ts#Hierarchical-time-series) - [Time series Basics : Exploring traditional TS](https://www.kaggle.com/code/jagangupta/time-series-basics-exploring-traditional-ts#Hierarchical-time-series)
- [How to Create an ARIMA Model for Time Series Forecasting in Python](https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python) - [How to Create an ARIMA Model for Time Series Forecasting in Python](https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python)
- [11 Classical Time Series Forecasting Methods in Python](https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/) - [11 Classical Time Series Forecasting Methods in Python](https://machinelearningmastery.com/time-series-forecasting-methods-in-python-cheat-sheet/)
- [Blockchain.com Data Scientist TakeHome Test](https://github.com/stalkermustang/bcdc_ds_takehome) - [Blockchain.com Data Scientist TakeHome Test](https://github.com/stalkermustang/bcdc_ds_takehome)
- [Linear Regression for Business Statistics](https://www.coursera.org/learn/linear-regression-business-statistics#about) - [Linear Regression for Business Statistics](https://imp.i384100.net/9g97Ke)

@ -1,4 +1,4 @@
# Statistics, CLT # Statistics, CLT
- [Introduction to Statistics](https://coursera.org/learn/stanford-statistics#syllabus) - [Introduction to Statistics](https://imp.i384100.net/3eRv4v)

Loading…
Cancel
Save