computer-scienceangular-roadmapbackend-roadmapblockchain-roadmapdba-roadmapdeveloper-roadmapdevops-roadmapfrontend-roadmapgo-roadmaphactoberfestjava-roadmapjavascript-roadmapnodejs-roadmappython-roadmapqa-roadmapreact-roadmaproadmapstudy-planvue-roadmapweb3-roadmap
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
537 lines
16 KiB
537 lines
16 KiB
import OpenAI from 'openai'; |
|
import path from 'path'; |
|
import fs from 'fs'; |
|
import { fileURLToPath } from 'url'; |
|
import { dirname } from 'path'; |
|
|
|
const __filename = fileURLToPath(import.meta.url); |
|
const __dirname = dirname(__filename); |
|
|
|
/** |
|
* @typedef {Object} Node |
|
* @property {string} id - The unique identifier for the node |
|
* @property {string} text - The text content of the node |
|
*/ |
|
|
|
const roadmapId = 'ai-agents'; |
|
|
|
/** @type {Node[]} */ |
|
const nodes = [ |
|
{ |
|
id: 'ZF5_5Y5zqa75Ov22JACX6', |
|
text: 'AI Agents > Transformer Models and LLMs', |
|
}, |
|
{ |
|
id: 'GAjuWyJl9CI1nqXBp6XCf', |
|
text: 'AI Agents > LLM Fundamentals > Model Mechanis > Tokenization', |
|
}, |
|
{ |
|
id: 'dyn1LSioema-Bf9lLTgUZ', |
|
text: 'AI Agents > LLM Fundamentals > Model Mechanis > Context Windows', |
|
}, |
|
{ |
|
id: '1fiWPBV99E2YncqdCgUw2', |
|
text: 'AI Agents > LLM Fundamentals > Model Mechanis > Token Based Pricing', |
|
}, |
|
{ |
|
id: 'L1zL1GzqjSAjF06pIIXhy', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Temperature', |
|
}, |
|
{ |
|
id: 'icbp1NjurQfdM0dHnz6v2', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Top-p', |
|
}, |
|
{ |
|
id: 'z_N-Y0zGkv8_qHPuVtimL', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Frequency Penalty', |
|
}, |
|
{ |
|
id: 'Vd8ycw8pW-ZKvg5WYFtoh', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Presence Penalty', |
|
}, |
|
{ |
|
id: 'K0G-Lw069jXUJwZqHtybd', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Stopping Criteria', |
|
}, |
|
{ |
|
id: 'Bn_BkthrVX_vOuwQzvPZa', |
|
text: 'AI Agents > LLM Fundamentals > Generation Controls > Max Length', |
|
}, |
|
{ |
|
id: 'DSJAhQhc1dQmBHQ8ZkTau', |
|
text: 'AI Agents > Model Families and Licences > Open Weight Models', |
|
}, |
|
{ |
|
id: 'tJYmEDDwK0LtEux-kwp9B', |
|
text: 'AI Agents > Model Families and Licences > Closed Weight Models', |
|
}, |
|
{ |
|
id: 'i2NE6haX9-7mdoV5LQ3Ah', |
|
text: 'AI Agents > Understand the Basics > Streamed vs Unstreamed Responses', |
|
}, |
|
{ |
|
id: 'N3yZfUxphxjiupqGpyaS9', |
|
text: 'AI Agents > Understand the Basics > Reasoning vs Standard Models', |
|
}, |
|
{ |
|
id: '5OW_6o286mj470ElFyJ_5', |
|
text: 'AI Agents > Understand the Basics > Fine-tuning vs Prompt Engineering', |
|
}, |
|
{ |
|
id: 'UIm54UmICKgep6s8Itcyv', |
|
text: 'AI Agents > Understand the Basics > Embeddings and Vector Search', |
|
}, |
|
{ |
|
id: 'qwVQOwBTLA2yUgRISzC8k', |
|
text: 'AI Agents > Understand the Basics > Understand the Basics of RAG', |
|
}, |
|
{ |
|
id: 'B8dzg61TGaknuruBgkEJd', |
|
text: 'AI Agents > Understand the Basics > Pricing of Common Models', |
|
}, |
|
{ |
|
id: 'aFZAm44nP5NefX_9TpT0A', |
|
text: 'AI Agents > AI Agents 101 > What are AI Agents?', |
|
}, |
|
{ |
|
id: '2zsOUWJQ8e7wnoHmq1icG', |
|
text: 'AI Agents > AI Agents 101 > What are Tools?', |
|
}, |
|
{ |
|
id: 'Eih4eybuYB3C2So8K0AT3', |
|
text: 'AI Agents > AI Agents 101 > Agent Loop', |
|
}, |
|
{ |
|
id: 'LU76AhCYDjxdBhpMQ4eMU', |
|
text: 'AI Agents > AI Agents 101 > Agent Loop > Perception / User Input', |
|
}, |
|
{ |
|
id: 'ycPRgRYR4lEBQr_xxHKnM', |
|
text: 'AI Agents > AI Agents 101 > Agent Loop > Reason and Plan', |
|
}, |
|
{ |
|
id: 'sHYd4KsKlmw5Im3nQ19W8', |
|
text: 'AI Agents > AI Agents 101 > Agent Loop > Acting / Tool Invocation', |
|
}, |
|
{ |
|
id: 'ZJTrun3jK3zBGOTm1jdMI', |
|
text: 'AI Agents > AI Agents 101 > Agent Loop > Observation & Reflection', |
|
}, |
|
{ |
|
id: 'PPdAutqJF5G60Eg9lYBND', |
|
text: 'AI Agents > AI Agents 101 > Example Usecases > Personal assistant', |
|
}, |
|
{ |
|
id: 'PK8w31GlvtmAuU92sHaqr', |
|
text: 'AI Agents > AI Agents 101 > Example Usecases > Code generation', |
|
}, |
|
{ |
|
id: 'wKYEaPWNsR30TIpHaxSsq', |
|
text: 'AI Agents > AI Agents 101 > Example Usecases > Data analysis', |
|
}, |
|
{ |
|
id: '5oLc-235bvKhApxzYFkEc', |
|
text: 'AI Agents > AI Agents 101 > Example Usecases > Web Scraping / Crawling', |
|
}, |
|
{ |
|
id: 'ok8vN7VtCgyef5x6aoQaL', |
|
text: 'AI Agents > AI Agents 101 > Example Usecases > NPC / Game AI', |
|
}, |
|
{ |
|
id: 'Y8EqzFx3qxtrSh7bWbbV8', |
|
text: 'AI Agents > Prompt Engineering > What is Prompt Engineering', |
|
}, |
|
{ |
|
id: 'qFKFM2qNPEN7EoD0V-1SM', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Be specific in what you want', |
|
}, |
|
{ |
|
id: '6I42CoeWX-kkFXTKAY7rw', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Provide additional context', |
|
}, |
|
{ |
|
id: 'sUwdtOX550tSdceaeFPmF', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Use relevant technical terms', |
|
}, |
|
{ |
|
id: 'yulzE4ZNLhXOgHhG7BtZQ', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Use Examples in your Prompt', |
|
}, |
|
{ |
|
id: 'noTuUFnHSBzn7GKG9UZEi', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Iterate and Test your Prompts', |
|
}, |
|
{ |
|
id: 'wwHHlEoPAx0TLxbtY6nMA', |
|
text: 'AI Agents > Prompt Engineering > Writing Good Prompts > Specify Length, format etc', |
|
}, |
|
{ |
|
id: 'qakbxB8xe7Y8gejC5cZnK', |
|
text: 'AI Agents > AI Agents 101 > Tools / Actions > Tool Definition', |
|
}, |
|
{ |
|
id: 'kBtqT8AduLoYDWopj-V9_', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > Web Search', |
|
}, |
|
{ |
|
id: 'mS0EVCkWuPN_GkVPng4A2', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > Code Execution / REPL', |
|
}, |
|
{ |
|
id: 'sV1BnA2-qBnXoKpUn-8Ub', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > Database Queries', |
|
}, |
|
{ |
|
id: '52qxjZILV-X1isup6dazC', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > API Requests > Tools / Actions > Examples of Tools > API Requests', |
|
}, |
|
{ |
|
id: 'qaNr5I-NQPnfrRH7ynGTl', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > Email / Slack / SMS', |
|
}, |
|
{ |
|
id: 'BoJqZvdGam4cd6G6yK2IV', |
|
text: 'AI Agents > Tools / Actions > Examples of Tools > File System Access', |
|
}, |
|
{ |
|
id: '1B0IqRNYdtbHDi1jHSXuI', |
|
text: 'AI Agents > Model Context Protocol (MCP)', |
|
}, |
|
{ |
|
id: '9FryAIrWRHh8YlzKX3et5', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Core Components > MCP Hosts', |
|
}, |
|
{ |
|
id: 'CGVstUxVXLJcYZrwk3iNQ', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Core Components > MCP Client', |
|
}, |
|
{ |
|
id: 'yv_-87FVM7WKn5iv6LW9q', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Core Components > MCP Servers', |
|
}, |
|
{ |
|
id: '1NXIN-Hbjl5rPy_mqxQYW', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Creating MCP Servers', |
|
}, |
|
{ |
|
id: 'iBtJp24F_kJE3YlBsW60s', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Creating MCP Servers > Deployment Modes > Local Desktop', |
|
}, |
|
{ |
|
id: 'dHNMX3_t1KSDdAWqgdJXv', |
|
text: 'AI Agents > Model Context Protocol (MCP) > Creating MCP Servers > Deployment Modes > Remote / Cloud', |
|
}, |
|
{ |
|
id: 'TBH_DZTAfR8Daoh-njNFC', |
|
text: 'AI Agents > Agent Memory > What is Agent Memory?', |
|
}, |
|
{ |
|
id: 'M3U6RfIqaiut2nuOibY8W', |
|
text: 'AI Agents > Agent Memory > Short Term Memory', |
|
}, |
|
{ |
|
id: 'Ue633fz6Xu2wa2-KOAtdP', |
|
text: 'AI Agents > Agent Memory > What is Agent Memory? > Long Term Memory', |
|
}, |
|
{ |
|
id: 'EfCCNqLMJpWKKtamUa5gK', |
|
text: 'AI Agents > Agent Memory > What is Agent Memory? > Episodic vs Semantic Memory', |
|
}, |
|
{ |
|
id: 'wkS4yOJ3JdZQE_yBID8K7', |
|
text: 'AI Agents > Agent Memory > What is Agent Memory? > Maintaining Memory > RAG and Vector Databases', |
|
}, |
|
{ |
|
id: 'QJqXHV8VHPTnfYfmKPzW7', |
|
text: 'AI Agents > Agent Memory > What is Agent Memory? > Maintaining Memory > User Profile Storage', |
|
}, |
|
{ |
|
id: 'jTDC19BTWCqxqMizrIJHr', |
|
text: 'AI Agents > Agent Memory > Maintaining Memory > Summarization / Compression', |
|
}, |
|
{ |
|
id: 'm-97m7SI0XpBnhEE8-_1S', |
|
text: 'AI Agents > Agent Memory > Maintaining Memory > Forgetting / Aging Strategies', |
|
}, |
|
{ |
|
id: 'cW8O4vLLKEG-Q0dE8E5Zp', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > RAG Agent', |
|
}, |
|
{ |
|
id: '53xDks6JQ33fHMa3XcuCd', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > ReAct (Reason + Act)', |
|
}, |
|
{ |
|
id: 'qwdh5pkBbrF8LKPxbZp4F', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > Chain of Thought (CoT)', |
|
}, |
|
{ |
|
id: '6YLCMWzystao6byCYCTPO', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > Planner Executor', |
|
}, |
|
{ |
|
id: 'Ep8RoZSy_Iq_zWXlGQLZo', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > DAG Agents', |
|
}, |
|
{ |
|
id: 'Nmy1PoB32DcWZnPM8l8jT', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > Tree-of-Thought', |
|
}, |
|
{ |
|
id: 'hj1adjkG9nalXKZ-Youn0', |
|
text: 'AI Agents > Agent Architectures > Common Architectures > Tree-of-Thought', |
|
}, |
|
{ |
|
id: 'US6T5dXM8IY9V2qZnTOFW', |
|
text: 'AI Agents > Building Agents > Manual (from scratch)', |
|
}, |
|
{ |
|
id: 'aafZxtjxiwzJH1lwHBODi', |
|
text: 'AI Agents > Building Agents > LLM Native "Function Calling"', |
|
}, |
|
{ |
|
id: 'AQtxTTxmBpfl8BMgJbGzc', |
|
text: 'AI Agents > Building Agents > LLM Native "Function Calling" > OpenAI Functions Calling', |
|
}, |
|
{ |
|
id: '37GBFVZ2J2d5r8bd1ViHq', |
|
text: 'AI Agents > Building Agents > LLM Native "Function Calling" > OpenAI Assistant API', |
|
}, |
|
{ |
|
id: '_iIsBJTVS6OBf_dsdmbVO', |
|
text: 'AI Agents > Building Agents > LLM Native "Function Calling" > Gemini Function Calling', |
|
}, |
|
{ |
|
id: '1EZFbDHA5J5_5BPMLMxXb', |
|
text: 'AI Agents > Building Agents > LLM Native "Function Calling" > Anthropic Tool Use', |
|
}, |
|
{ |
|
id: 'Ka6VpCEnqABvwiF9vba7t', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > Langchain', |
|
}, |
|
{ |
|
id: 'iEHF-Jm3ck-Iu85EbCoDi', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > LlamaIndex', |
|
}, |
|
{ |
|
id: 'XS-FsvtrXGZ8DPrwOsnlI', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > Haystack', |
|
}, |
|
{ |
|
id: '7YtnQ9-KIvGPSpDzEDexl', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > AutoGen', |
|
}, |
|
{ |
|
id: 'uFPJqgU4qGvZyxTv-osZA', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > CrewAI', |
|
}, |
|
{ |
|
id: 'eWxQiBrxIUG2JNcrdfIHS', |
|
text: 'AI Agents > Building Agents > Building Using Frameworks > Smol Depot', |
|
}, |
|
{ |
|
id: 'v8qLnyFRnEumodBYxQSXQ', |
|
text: 'AI Agents > Building Agents > Evaluation and Testing > Metrics to Track', |
|
}, |
|
{ |
|
id: 'qo_O4YAe4-MTP_ZJoXJHR', |
|
text: 'AI Agents > Evaluation and Testing > Unit Testing for Individual Tools', |
|
}, |
|
{ |
|
id: 'P9-SiIda3TSjHsfkI5OUV', |
|
text: 'AI Agents > Evaluation and Testing > Integration Testing for Flows', |
|
}, |
|
{ |
|
id: 'rHxdxN97ZcU7MPl8L1jzN', |
|
text: 'AI Agents > Evaluation and Testing > Human in the Loop Evaluation', |
|
}, |
|
{ |
|
id: 'xp7TCTRE9HP60_rGzTUF6', |
|
text: 'AI Agents > Evaluation and Testing > Frameworks > LangSmith', |
|
}, |
|
{ |
|
id: '0924QUH1wV7Mp-Xu0FAhF', |
|
text: 'AI Agents > Evaluation and Testing > Frameworks > DeepEval', |
|
}, |
|
{ |
|
id: 'YzEDtGEaMaMWVt0W03HRt', |
|
text: 'AI Agents > Evaluation and Testing > Frameworks > Ragas', |
|
}, |
|
{ |
|
id: 'zs6LM8WEnb0ERWpiaQCgc', |
|
text: 'AI Agents > Debugging and Monitoring > Structured logging & tracing', |
|
}, |
|
{ |
|
id: 'zs6LM8WEnb0ERWpiaQCgc', |
|
text: 'AI Agents > Debugging and Monitoring > Structured logging & tracing', |
|
}, |
|
{ |
|
id: 'SS8mGqf9wfrNqenIWvN8Z', |
|
text: 'AI Agents > Observability Tools > LangSmith', |
|
}, |
|
{ |
|
id: 'MLxP5N0Vrmwh-kyvNeGXn', |
|
text: 'AI Agents > Observability Tools > Helicone', |
|
}, |
|
{ |
|
id: 'UoIheaJlShiceafrWALEH', |
|
text: 'AI Agents > Observability Tools > LangFuse', |
|
}, |
|
{ |
|
id: '7UqPXUzqKYXklnB3x-tsv', |
|
text: 'AI Agents > Observability Tools > openllmetry', |
|
}, |
|
{ |
|
id: 'SU2RuicMUo8tiAsQtDI1k', |
|
text: 'AI Agents > Security & Ethics > Prompt Injection / Jailbreaks', |
|
}, |
|
{ |
|
id: 'UVzLGXG6K7HQVHmw8ZAv2', |
|
text: 'AI Agents > Security & Ethics > Tool sandboxing / Permissioning', |
|
}, |
|
{ |
|
id: 'rdlYBJNNyZUshzsJawME4', |
|
text: 'AI Agents > Security & Ethics > Data Privacy + PII Redaction', |
|
}, |
|
{ |
|
id: 'EyLo2j8IQsIK91SKaXkmK', |
|
text: 'AI Agents > Security & Ethics > Bias & Toxicity Guardrails', |
|
}, |
|
{ |
|
id: '63nsfJFO1BwjLX_ZVaPFC', |
|
text: 'AI Agents > Security & Ethics > Safety + Red Team Testing', |
|
}, |
|
]; |
|
|
|
const OPENAI_API_KEY = process.env.OPENAI_API_KEY; |
|
|
|
if (!OPENAI_API_KEY) { |
|
console.error('OPENAI_API_KEY is not set'); |
|
process.exit(1); |
|
} |
|
|
|
const openai = new OpenAI({ |
|
apiKey: OPENAI_API_KEY, |
|
}); |
|
|
|
const prompt = ` |
|
You are a helpful assistant that can help me generate content for a roadmap tree. |
|
You will be given a roadmap topic in the form of "Parent > Child > Leaf". You need |
|
to generate a single paragraph explaining the topic. |
|
Also, I hate it when you say "In the realm of..." |
|
or "In the context of..." or "..in the context of..." or "when we talk about..." or something |
|
similar. |
|
IMPORTANT: Use simple and clear English. Avoid complex words and jargon when possible. |
|
Write in a way that is easy to understand. Use short sentences and common words. |
|
`; |
|
|
|
/** |
|
* Generates content for a given node using OpenAI's GPT model |
|
* @param {Node} node - The node to generate content for |
|
* @returns {Promise<string>} The generated content |
|
*/ |
|
const generateContent = async (node) => { |
|
try { |
|
const content = await openai.chat.completions.create({ |
|
model: 'o3', |
|
messages: [ |
|
{ role: 'system', content: prompt }, |
|
{ |
|
role: 'user', |
|
content: `Node: ${node.text}`, |
|
}, |
|
], |
|
}); |
|
|
|
return content.choices[0].message.content; |
|
} catch (error) { |
|
console.error( |
|
`Error generating content for node ${node.id}:`, |
|
error.message, |
|
); |
|
throw error; |
|
} |
|
}; |
|
|
|
const roadmapContentDir = path.join( |
|
__dirname, |
|
`../src/data/roadmaps/${roadmapId}/content`, |
|
); |
|
const contentFiles = fs.readdirSync(roadmapContentDir); |
|
|
|
/** |
|
* Processes a single node by generating content and writing to file |
|
* @param {Node} node - The node to process |
|
* @param {string} roadmapContentDir - Directory path for content files |
|
* @param {string[]} contentFiles - List of existing content files |
|
* @returns {Promise<void>} |
|
*/ |
|
const processNode = async (node, roadmapContentDir, contentFiles) => { |
|
try { |
|
const nodeId = node.id; |
|
const relevantFileName = contentFiles.find((file) => |
|
file.endsWith(`${nodeId}.md`), |
|
); |
|
|
|
if (!relevantFileName) { |
|
console.warn(`No matching file found for node ${nodeId}`); |
|
return; |
|
} |
|
|
|
const fileTitle = node.text |
|
.replace(/\s+>\s+/g, '>') |
|
.split('>') |
|
.pop(); |
|
|
|
const content = await generateContent(node); |
|
const filePath = path.join(roadmapContentDir, relevantFileName); |
|
|
|
await fs.promises.writeFile(filePath, `# ${fileTitle}\n\n${content}`); |
|
console.log(`Successfully processed node ${nodeId}`); |
|
} catch (error) { |
|
console.error(`Failed to process node ${node.id}:`, error.message); |
|
} |
|
}; |
|
|
|
/** |
|
* Main function to run the content generation |
|
* @returns {Promise<void>} |
|
*/ |
|
const main = async () => { |
|
try { |
|
// Process nodes in parallel with concurrency limit |
|
const BATCH_SIZE = 20; // Adjust based on API rate limits |
|
|
|
for (let i = 0; i < nodes.length; i += BATCH_SIZE) { |
|
const batch = nodes.slice(i, i + BATCH_SIZE); |
|
const promises = batch.map((node) => |
|
processNode(node, roadmapContentDir, contentFiles), |
|
); |
|
|
|
await Promise.allSettled(promises); |
|
|
|
// Add a small delay between batches to avoid rate limiting |
|
if (i + BATCH_SIZE < nodes.length) { |
|
await new Promise((resolve) => setTimeout(resolve, 1000)); |
|
} |
|
} |
|
|
|
console.log('Content generation completed'); |
|
} catch (error) { |
|
console.error('Fatal error in main process:', error); |
|
process.exit(1); |
|
} |
|
}; |
|
|
|
// Add error handling for uncaught exceptions |
|
process.on('uncaughtException', (error) => { |
|
console.error('Uncaught Exception:', error); |
|
process.exit(1); |
|
}); |
|
|
|
process.on('unhandledRejection', (error) => { |
|
console.error('Unhandled Rejection:', error); |
|
process.exit(1); |
|
}); |
|
|
|
main();
|
|
|