computer-scienceangular-roadmapbackend-roadmapblockchain-roadmapdba-roadmapdeveloper-roadmapdevops-roadmapfrontend-roadmapgo-roadmaphactoberfestjava-roadmapjavascript-roadmapnodejs-roadmappython-roadmapqa-roadmapreact-roadmaproadmapstudy-planvue-roadmapweb3-roadmap
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
973 B
973 B
RAG
Retrieval-Augmented Generation (RAG) is an AI approach that combines information retrieval with language generation to create more accurate, contextually relevant outputs. It works by first retrieving relevant data from a knowledge base or external source, then using a language model to generate a response based on that information. This method enhances the accuracy of generative models by grounding their outputs in real-world data, making RAG ideal for tasks like question answering, summarization, and chatbots that require reliable, up-to-date information.
Learn more from the following resources: