computer-scienceangular-roadmapbackend-roadmapblockchain-roadmapdba-roadmapdeveloper-roadmapdevops-roadmapfrontend-roadmapgo-roadmaphactoberfestjava-roadmapjavascript-roadmapnodejs-roadmappython-roadmapqa-roadmapreact-roadmaproadmapstudy-planvue-roadmapweb3-roadmap
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
588 lines
13 KiB
588 lines
13 KiB
{ |
|
"_hYN0gEi9BL24nptEtXWU": { |
|
"title": "Introduction", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"GN6SnI7RXIeW8JeD-qORW": { |
|
"title": "What is an AI Engineer?", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"jSZ1LhPdhlkW-9QJhIvFs": { |
|
"title": "AI Engineer vs ML Engineer", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"wf2BSyUekr1S1q6l8kyq6": { |
|
"title": "LLMs", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"KWjD4xEPhOOYS51dvRLd2": { |
|
"title": "Inference", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"xostGgoaYkqMO28iN2gx8": { |
|
"title": "Training", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"XyEp6jnBSpCxMGwALnYfT": { |
|
"title": "Embeddings", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"LnQ2AatMWpExUHcZhDIPd": { |
|
"title": "Vector Databases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"9JwWIK0Z2MK8-6EQQJsCO": { |
|
"title": "RAG", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"Dc15ayFlzqMF24RqIF_-X": { |
|
"title": "Prompt Engineering", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"9XCxilAQ7FRet7lHQr1gE": { |
|
"title": "AI Agents", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"5QdihE1lLpMc3DFrGy46M": { |
|
"title": "AI vs AGI", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"qJVgKe9uBvXc-YPfvX_Y7": { |
|
"title": "Impact on Product Development", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"K9EiuFgPBFgeRxY4wxAmb": { |
|
"title": "Roles and Responsiblities", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"d7fzv_ft12EopsQdmEsel": { |
|
"title": "Pre-trained Models", |
|
"description": "Pre-trained models are Machine Learning (ML) models that have been previously trained on a large dataset to solve a specific task or set of tasks. These models learn patterns, features, and representations from the training data, which can then be fine-tuned or adapted for other related tasks. Pre-training provides a good starting point, reducing the amount of data and computation required to train a new model from scratch.\n\nVisit the following resources to learn more:", |
|
"links": [ |
|
{ |
|
"title": "Pre-trained models: Past, present and future", |
|
"url": "https://www.sciencedirect.com/science/article/pii/S2666651021000231", |
|
"type": "article" |
|
} |
|
] |
|
}, |
|
"1Ga6DbOPc6Crz7ilsZMYy": { |
|
"title": "Benefits of Pre-trained Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"MXqbQGhNM3xpXlMC2ib_6": { |
|
"title": "Limitations and Considerations", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"2WbVpRLqwi3Oeqk1JPui4": { |
|
"title": "Open AI Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"vvpYkmycH0_W030E-L12f": { |
|
"title": "Capabilities / Context Length", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"LbB2PeytxRSuU07Bk0KlJ": { |
|
"title": "Cut-off Dates / Knowledge", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"hy6EyKiNxk1x84J63dhez": { |
|
"title": "Anthropic's Claude", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"oe8E6ZIQWuYvHVbYJHUc1": { |
|
"title": "Google's Gemini", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"3PQVZbcr4neNMRr6CuNzS": { |
|
"title": "Azure AI", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"OkYO-aSPiuVYuLXHswBCn": { |
|
"title": "AWS Sagemaker", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"8XjkRqHOdyH-DbXHYiBEt": { |
|
"title": "Hugging Face Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"n-Ud2dXkqIzK37jlKItN4": { |
|
"title": "Mistral AI", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"a7qsvoauFe5u953I699ps": { |
|
"title": "Cohere", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"5ShWZl1QUqPwO-NRGN85V": { |
|
"title": "OpenAI Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"zdeuA4GbdBl2DwKgiOA4G": { |
|
"title": "OpenAI API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"_bPTciEA1GT1JwfXim19z": { |
|
"title": "Chat Completions API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"9-5DYeOnKJq9XvEMWP45A": { |
|
"title": "Writing Prompts", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"nyBgEHvUhwF-NANMwkRJW": { |
|
"title": "Open AI Playground", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"15XOFdVp0IC-kLYPXUJWh": { |
|
"title": "Fine-tuning", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"qzvp6YxWDiGakA2mtspfh": { |
|
"title": "Maximum Tokens", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"FjV3oD7G2Ocq5HhUC17iH": { |
|
"title": "Token Counting", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"DZPM9zjCbYYWBPLmQImxQ": { |
|
"title": "Pricing Considerations", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"8ndKHDJgL_gYwaXC7XMer": { |
|
"title": "AI Safety and Ethics", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"cUyLT6ctYQ1pgmodCKREq": { |
|
"title": "Prompt Injection Attacks", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"lhIU0ulpvDAn1Xc3ooYz_": { |
|
"title": "Bias and Fareness", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"sWBT-j2cRuFqRFYtV_5TK": { |
|
"title": "Security and Privacy Concerns", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"Pt-AJmSJrOxKvolb5_HEv": { |
|
"title": "Conducting adversarial testing", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ljZLa3yjQpegiZWwtnn_q": { |
|
"title": "OpenAI Moderation API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"4Q5x2VCXedAWISBXUIyin": { |
|
"title": "Adding end-user IDs in prompts", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"qmx6OHqx4_0JXVIv8dASp": { |
|
"title": "Robust prompt engineering", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"t1SObMWkDZ1cKqNNlcd9L": { |
|
"title": "Know your Customers / Usecases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ONLDyczNacGVZGojYyJrU": { |
|
"title": "Constraining outputs and inputs", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"a_3SabylVqzzOyw3tZN5f": { |
|
"title": "OpenSource AI", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"RBwGsq9DngUsl8PrrCbqx": { |
|
"title": "Open vs Closed Source Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"97eu-XxYUH9pYbD_KjAtA": { |
|
"title": "Popular Open Source Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"v99C5Bml2a6148LCJ9gy9": { |
|
"title": "Hugging Face", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"YLOdOvLXa5Fa7_mmuvKEi": { |
|
"title": "Hugging Face Hub", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"YKIPOiSj_FNtg0h8uaSMq": { |
|
"title": "Hugging Face Tasks", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"3kRTzlLNBnXdTsAEXVu_M": { |
|
"title": "Inference SDK", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"bGLrbpxKgENe2xS1eQtdh": { |
|
"title": "Transformers.js", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"rTT2UnvqFO3GH6ThPLEjO": { |
|
"title": "Ollama", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ro3vY_sp6xMQ-hfzO-rc1": { |
|
"title": "Ollama Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"TsG_I7FL-cOCSw8gvZH3r": { |
|
"title": "Ollama SDK", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"--ig0Ume_BnXb9K2U7HJN": { |
|
"title": "What are Embeddings", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"eMfcyBxnMY_l_5-8eg6sD": { |
|
"title": "Semantic Search", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"HQe9GKy3p0kTUPxojIfSF": { |
|
"title": "Recommendation Systems", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"AglWJ7gb9rTT2rMkstxtk": { |
|
"title": "Anomaly Detection", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"06Xta-OqSci05nV2QMFdF": { |
|
"title": "Data Classification", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"l6priWeJhbdUD5tJ7uHyG": { |
|
"title": "Open AI Embeddings API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"y0qD5Kb4Pf-ymIwW-tvhX": { |
|
"title": "Open AI Embedding Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"4GArjDYipit4SLqKZAWDf": { |
|
"title": "Pricing Considerations", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"apVYIV4EyejPft25oAvdI": { |
|
"title": "Open-Source Embeddings", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ZV_V6sqOnRodgaw4mzokC": { |
|
"title": "Sentence Transformers", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"dLEg4IA3F5jgc44Bst9if": { |
|
"title": "Models on Hugging Face", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"tt9u3oFlsjEMfPyojuqpc": { |
|
"title": "Vector Databases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"WcjX6p-V-Rdd77EL8Ega9": { |
|
"title": "Purpose and Functionality", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"dSd2C9lNl-ymmCRT9_ZC3": { |
|
"title": "Chroma", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"_Cf7S1DCvX7p1_3-tP3C3": { |
|
"title": "Pinecone", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"VgUnrZGKVjAAO4n_llq5-": { |
|
"title": "Weaviate", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"JurLbOO1Z8r6C3yUqRNwf": { |
|
"title": "FAISS", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"rjaCNT3Li45kwu2gXckke": { |
|
"title": "LanceDB", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"DwOAL5mOBgBiw-EQpAzQl": { |
|
"title": "Qdrant", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"9kT7EEQsbeD2WDdN9ADx7": { |
|
"title": "Supabase", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"j6bkm0VUgLkHdMDDJFiMC": { |
|
"title": "MongoDB Atlas", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"5TQnO9B4_LTHwqjI7iHB1": { |
|
"title": "Indexing Embeddings", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ZcbRPtgaptqKqWBgRrEBU": { |
|
"title": "Performing Similarity Search", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"lVhWhZGR558O-ljHobxIi": { |
|
"title": "RAG & Implementation", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"GCn4LGNEtPI0NWYAZCRE-": { |
|
"title": "RAG Usecases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"qlBEXrbV88e_wAGRwO9hW": { |
|
"title": "RAG vs Fine-tuning", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"mX987wiZF7p3V_gExrPeX": { |
|
"title": "Chunking", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"grTcbzT7jKk_sIUwOTZTD": { |
|
"title": "Embedding", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"zZA1FBhf1y4kCoUZ-hM4H": { |
|
"title": "Vector Database", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"OCGCzHQM2LQyUWmiqe6E0": { |
|
"title": "Retrieval Process", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"2jJnS9vRYhaS69d6OxrMh": { |
|
"title": "Generation", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"WZVW8FQu6LyspSKm1C_sl": { |
|
"title": "Using SDKs Directly", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"ebXXEhNRROjbbof-Gym4p": { |
|
"title": "Langchain", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"d0ontCII8KI8wfP-8Y45R": { |
|
"title": "Llama Index", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"eOqCBgBTKM8CmY3nsWjre": { |
|
"title": "Open AI Assistant API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"c0RPhpD00VIUgF4HJgN2T": { |
|
"title": "Replicate", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"AeHkNU-uJ_gBdo5-xdpEu": { |
|
"title": "AI Agents", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"778HsQzTuJ_3c9OSn5DmH": { |
|
"title": "Agents Usecases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"voDKcKvXtyLzeZdx2g3Qn": { |
|
"title": "ReAct Prompting", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"6xaRB34_g0HGt-y1dGYXR": { |
|
"title": "Manual Implementation", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"Sm0Ne5Nx72hcZCdAcC0C2": { |
|
"title": "OpenAI Functions / Tools", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"mbp2NoL-VZ5hZIIblNBXt": { |
|
"title": "OpenAI Assistant API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"W7cKPt_UxcUgwp8J6hS4p": { |
|
"title": "Multimodal AI", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"sGR9qcro68KrzM8qWxcH8": { |
|
"title": "Multimodal AI Usecases", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"fzVq4hGoa2gdbIzoyY1Zp": { |
|
"title": "Image Understanding", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"49BWxYVFpIgZCCqsikH7l": { |
|
"title": "Image Generation", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"TxaZCtTCTUfwCxAJ2pmND": { |
|
"title": "Video Understanding", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"mxQYB820447DC6kogyZIL": { |
|
"title": "Audio Processing", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"GCERpLz5BcRtWPpv-asUz": { |
|
"title": "Text-to-Speech", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"jQX10XKd_QM5wdQweEkVJ": { |
|
"title": "Speech-to-Text", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"CRrqa-dBw1LlOwVbrZhjK": { |
|
"title": "OpenAI Vision API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"LKFwwjtcawJ4Z12X102Cb": { |
|
"title": "DALL-E API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"OTBd6cPUayKaAM-fLWdSt": { |
|
"title": "Whisper API", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"EIDbwbdolR_qsNKVDla6V": { |
|
"title": "Hugging Face Models", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"j9zD3pHysB1CBhLfLjhpD": { |
|
"title": "LangChain for Multimodal Apps", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"akQTCKuPRRelj2GORqvsh": { |
|
"title": "LlamaIndex for Multimodal Apps", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"NYge7PNtfI-y6QWefXJ4d": { |
|
"title": "Development Tools", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"XcKeQfpTA5ITgdX51I4y-": { |
|
"title": "AI Code Editors", |
|
"description": "", |
|
"links": [] |
|
}, |
|
"TifVhqFm1zXNssA8QR3SM": { |
|
"title": "Code Completion Tools", |
|
"description": "", |
|
"links": [] |
|
} |
|
} |