diff --git a/free-programming-books.md b/free-programming-books.md index 74f26fc96..2e892687d 100644 --- a/free-programming-books.md +++ b/free-programming-books.md @@ -307,23 +307,23 @@ * [AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java](http://wps.aw.com/wps/media/objects/5771/5909832/PDF/Luger_0136070477_1.pdf) - George F. Luger, William A Stubblefield * [An Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani * [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)* +* [Artificial Intelligence A Modern Approach](http://51lica.com/wp-content/uploads/2012/05/Artificial-Intelligence-A-Modern-Approach-3rd-Edition.pdf) (PDF) * [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage) * [Computer Vision: Algorithms and Applications](http://hackershelf.com/book/134/computer-vision-algorithms-and-applications/) * [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/) +* [Inductive Logic Programming](http://www-ai.ijs.si/SasoDzeroski/ILPBook/) * [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/) -* [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) (PDF) +* [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan (PDF) +* [Introduction to Machine Learning](http://arxiv.org/abs/0904.3664v1) - Amnon Shashua * [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) (PDF) +* [Machine Learning](http://www.intechopen.com/books/machine_learning) * [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/whole.pdf) (PDF) or [online version](http://www1.maths.leeds.ac.uk/~charles/statlog/) - This book is based on the EC (ESPRIT) project StatLog. * [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com) * [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code) * [Reinforcement Learning: An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html) * [The Elements of Statistical Learning](http://www-stat.stanford.edu/~tibs/ElemStatLearn/) - Trevor Hastie, Robert Tibshirani, and Jerome Friedman -* [The Python Game Book](http://thepythongamebook.com/en:start) * [The LION Way: Machine Learning plus Intelligent Optimization](http://www.e-booksdirectory.com/details.php?ebook=9575) -* [Introduction to Machine Learning](http://arxiv.org/abs/0904.3664v1) -* [Machine Learning](http://www.intechopen.com/books/machine_learning) -* [Inductive Logic Programming](http://www-ai.ijs.si/SasoDzeroski/ILPBook/) -* [Artificial Intelligence A Modern Approach](http://51lica.com/wp-content/uploads/2012/05/Artificial-Intelligence-A-Modern-Approach-3rd-Edition.pdf) (PDF) +* [The Python Game Book](http://thepythongamebook.com/en:start) ####Mathematics